

### **CUENCA MATANZA RIACHUELO**

# MEDICIÓN DEL ESTADO DEL AGUA SUPERFICIAL Y SUBTERRÁNEA

## ANÁLISIS E INTERPRETACIÓN DE LOS RESULTADOS

Informe Trimestral de Julio-Septiembre 2015



Octubre de 2015

## **AUTORIDAD DE CUENCA MATANZA RIACHUELO (ACUMAR)**

Dirección General Técnica Coordinación de Calidad Ambiental



#### **CONTENIDO**

| RESUM        | EN EJECUTIVO                                                                                                                          | 3  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------|----|
| 1.           | MONITOREO DE AGUA SUPERFICIAL Y SEDIMENTOS                                                                                            | 6  |
| 1.1.         | Estado del Agua Superficial de la Cuenca Matanza Riachuelo                                                                            | 8  |
| 1.1.1        | EVALUACION POR SUBCUENCAS DEL PRIMER AÑO DE OPERACIÓN DE LA RED DE 70 ESTACIONES DE OPERACIÓN MANUAL. CAUDALES Y CALIDAD DE AGUA"     | 8  |
| 1.1.2        | MEDICIONES DIRECTAS DE CALIDAD DEL AGUA SUPERFICIAL CON SONDA MULTIPARAMÉTRICA                                                        | 13 |
| 1.2.<br>Mata | Monitoreo Automático y Continuo de caudales y Parámetros Físico-Químicos en la Continuo de Riachuelo                                  |    |
| 2. MON       | ITOREO DE AGUA SUBTERRÁNEA                                                                                                            | 22 |
| 2.1.         | Registros de las profundidades del agua.                                                                                              | 23 |
| 2.2.         | Monitoreo de la Calidad de las Aguas subterráneas                                                                                     | 30 |
| 2.3.         | Registros históricos entre 2008 y Febrero/Marzo de 2015                                                                               | 32 |
| 2.4.         | Aspectos conclusivos de los monitoreos históricos entre 2008-2015                                                                     | 59 |
| 2.5.         | Continuidad de los monitoreos. Programas de ampliación de la red                                                                      | 61 |
| 2.6.         | Finalidad de los monitoreos de agua subterránea.                                                                                      | 62 |
| 3.           | BIODIVERSIDAD                                                                                                                         | 63 |
| 3.1. N       | Nonitoreo de la Ictiofauna en Cursos de Agua Superficial de la CHMR                                                                   | 63 |
| 3.2. 🗅       | oifusión de Areas de Protección Ambiental (apaS) y de la Biodiversidad de la CMR                                                      | 64 |
|              | Monitoreo de la Calidad del Agua de Humedales Prioritarios de la Cuenca Matanza Riac                                                  |    |
|              |                                                                                                                                       |    |
|              |                                                                                                                                       |    |
|              | I: TABLA DE SITIOS DE MONITOREO CMR EN SETENTA (70) ESTACIONES. CONTRATO EV                                                           |    |
|              | II. TABLAS DE DATOS (7 parámetros) DEL MUESTREO DE CALIDAD EN LA CUENCA MATA<br>ELO con sonda multiparamétrica— Julio-Septimebre 2015 |    |
|              | III. TABLAS DE DATOS DEL MUESTREO DE ALMIRANTE BROWN – ARROYO DEL REY. juni<br>o 2015                                                 |    |
|              | IV. RED DE POZOS DE MONITOREO DE AGUA SUBTERRÁNEA ACUMAR. CAMPAÑA<br>/marzo 2015                                                      | 78 |
| ANEXO        | V. AGUA SUBTERRANEA. CAMPAÑA Febrero/marzo 2015                                                                                       | 79 |



#### **RESUMEN EJECUTIVO**

#### CALIDAD DE AGUA SUPERFICIAL Y SEDIMENTOS EN LA CUENCA MATANZA RIACHUELO

En lo referente al monitoreo de calidad de agua superficial en estaciones de operación manual, en el mes de abril-mayo de 2015, el Instituto Nacional del Agua (INA) ha realizado la cuarta (4°) y última campaña correspondiente al primer contrato interadministrativo entre el INA-ACUMAR, tramitado bajo Expediente ACR: 2598/2013. Por otro lado, y bajo el expediente ACR: 0000243/2015, se están concluyendo las instancias administrativas entre el INA y ACUMAR para la continuidad del monitoreo en la red histórica de treinta y ocho (38) estaciones de operación manual, la cual es operada por el INA desde el mismo inicio del PMI en el año 2008. Es importante aclarar que en la campaña realizada en el mes de abril de 2015, el INA, además de la toma de muestras de agua superficial sin filtrar para ser procesadas en los laboratorios del Centro de Tratamiento y Uso del AGUA (CTUA) del propio INA, se realizó la toma de muestras con dragas de mano, de sedimentos superficiales de fondo, correspondientes a la campaña que se realiza sobre esta matriz, con periodicidad anual, también desde el año 2008.

Considerando el comienzo del Programa de Monitoreo Integrado en el año 2008 y con la última campaña que ha concluido en el mes de mayo de 2015, el INA lleva realizadas un total de veintitrés (23) campañas de monitoreo de la calidad del agua superficial.

Por lo expuesto anteriormente no se han generado datos nuevos en la citada red histórica operada por el INA y los mismos ya han sido presentados en el Informe Trimestral del mes de julio de 2015. Con este informe al Juzgado Federal, se presentará el Informe Técnico elaborado por el INA con los resultados obtenidos producto de la campaña realizada en abril-mayo de 2015, sobre los muestreos de agua superficial y sedimentos superficiales de fondo realizados en la misma.

En este Informe Trimestral, se incluye un Informe Técnico Especial elaborado por la Coordinación de Calidad Ambiental de ACUMAR, en el mes de setiembre de 2015, denominado "EVALUACION POR SUBCUENCAS DEL PRIMER AÑO DE OPERACIÓN DE LA RED DE 70 ESTACIONES DE OPERACIÓN MANUAL. CAUDALES Y CALIDAD DE AGUA", elaborado con los datos generados en el monitoreo simultáneo de calidad-caudal del agua superficial, obtenidos en la red ampliada de setenta (70) estaciones de operación manual, que fue operada desde diciembre de 2013 a noviembre de 2014 por la empresa EVARSA, en cumplimiento del Contrato que tramitó bajo Expediente ACR: 5923/2012 "INSTALACION DE ESCALAS HIDROMÉTRICAS, REALIZACIÓN DE AFOROS SISTEMÁTICOS Y MONITOREO DE LA CALIDAD DEL AGUA SUPERFICIAL EN LA CUENCA MATANZA RIACHUELO".



El objetivo del citado Informe Técnico Especial es el de realizar un análisis por subcuenca de los datos de caudal y calidad generados durante un año de monitoreo (dic 2013 a nov 2014) en la red de monitoreo simultáneo de caudal y calidad del agua superficial, en la red ampliada, compuesta por setenta (70) estaciones de la Cuenca Hídrica Matanza Riachuelo (CHMR). Para el análisis de la calidad del agua superficial en las subcuencas, se contemplan los valores asociados a calidad del agua superficial (valores o concentraciones de referencia) establecidos por la Resolución ACUMAR Nº 3/2009 que establece como meta primaria de calidad, el Uso IV de Recreación Pasiva sin contacto.

El citado Informe Técnico Especial elaborado por la CDCA, considera a las subcuencas como unidades de análisis, particularizando la situación de la subcuenca Riachuelo que, por la cantidad de estaciones de monitoreo que presenta (14 estaciones), resultó conveniente subdividirla en dos áreas: Urbana I y Urbana II.

Entre mediados del mes de julio y septiembre del año 2015, personal de la Coordinación de Calidad Ambiental, ha recorrido las distintas estaciones de monitoreo simultáneo de caudal-calidad correspondientes a la red ampliada de setenta (70) estaciones que fue operada por EVARSA entre diciembre de 2013-noviembre 2014, realizando determinaciones directas a campo, utilizando sonda multiparamétrica, para ocho (8) parámetros fisicoquímicos. Los resultados de esos monitoreos se incluirán en el presente informe.

Como es habitual en las presentaciones trimestrales, los datos generados por los monitoreos sistemáticos realizados con periodicidad mensual por los municipios de Almirante Brown, para el trimestre mayo, junio y julio de 2015, en seis (6) estaciones de monitoreo localizadas en las proximidades del parque industrial y el restante ubicado en el límite con el Municipio de Lomas de Zamora en el arroyo Del Rey y también por el Gobierno de la Ciudad Autónoma de Buenos Aires a través de la APRA, en tres (3) estaciones ubicadas en el tramo inferior del Riachuelo para el trimestre junio, julio y agosto de 2015, han sido cargados en la Base de Datos Hidrológica (BDH) de ACUMAR.

#### **BIODIVERSIDAD EN CURSOS SUPERFICIALES DE LA CUENCA MATANZA RIACHUELO**

En cuanto a la Biodiversidad en el trimestre julio-octubre 2015 se avanzó en acciones de difusión y puesta en valor de las Áreas de Protección Ambiental (APAs) así como de la biodiversidad, en particular el grupo taxonómico Aves con fines educativos y de identificación por parte de los grupos locales a través de la edición de dos folletos y guías. Además se realizó la segunda campaña de monitoreo del grupo peces en 45 estaciones, junto con el ILPLA.



#### CALIDAD Y NIVELES DEL AGUA SUBTERRÁNEA EN LA CUENCA MATANZA RIACHUELO

En relación al monitoreo de agua subterránea, se resumen las principales actividades desarrolladas por ACUMAR que tienen por objetivo incrementar el conocimiento de la dinámica y calidad del agua de los acuíferos Freático y Puelche. Se presentan entonces los resultados de la cuarta campaña de monitoreo realizada entre los meses de febrero y marzo (campaña de verano) de 2015. La operación de la red de pozos de monitoreo se realiza a través del Instituto Nacional del Agua (INA), quien ha ejecutado dicha campaña entre el 23 de febrero y el 10 de marzo de 2015. Durante la ejecución de esta campaña se registraron medidas de las profundidades del agua en 91 pozos, mientras que en un total de 64 perforaciones, se tomaron muestras para determinaciones de parámetros físico-químicos, que incluyeron determinaciones de campo, iones mayoritarios, conductividad eléctrica, alcalinidad, dureza total, arsénico que tienen como finalidad monitorear la calidad del agua subterránea.

Desde el año 2010 ACUMAR ha impulsado y ejecutado programas de mantenimiento y ampliación de la red de monitoreo con el fin de incrementar su representatividad para este objetivo en particular además de mantener y reacondicionar la red de pozos existentes. Para tal fin se encuentra en gestiones administrativas el expediente ACR: 000305/2015 que tramita la "Contratación de empresa de servicios para ampliación y mantenimiento de la red de pozos para monitoreo de agua subterránea en la CHMR". Dicha contratación prevé la incorporación de nuevos sitios de monitoreo con la ejecución de nuevas perforaciones, reparación de pozos dañados y reemplazo de aquellos que se encuentran fuera de servicio, además del acondicionamiento de los sitios de monitoreo.

FIN DEL RESUMEN EJECUTIVO



#### 1. MONITOREO DE AGUA SUPERFICIAL Y SEDIMENTOS

El monitoreo sistemático de la Calidad del Agua y Sedimentos que lleva a cabo la ACUMAR, a través de diferentes prestadores, desde el año 2008 a la fecha, en diferentes cursos superficiales que conforman la Cuenca Hídrica Matanza Riachuelo (CHMR), es un componente constitutivo de gran relevancia dentro del Programa de Monitoreo Integrado (PMI) incluido en el Plan Integral de Saneamiento Ambiental de la Cuenca Matanza Riachuelo (PISA).

El PMI, incluye la continuidad espacio-temporal de un monitoreo de la calidad del agua superficial y los sedimentos de la CHMR, expresada en función de las concentraciones determinadas para parámetros representativos de la calidad de la matriz agua superficial. Ese es el denominado monitoreo histórico que se viene realizando desde el año 2008.

La red histórica de monitoreo del agua superficial, está compuesta por un total de treinta y ocho (38) estaciones fijas de operación manual, ubicadas en diferentes cursos de agua de la Cuenca Hídrica Matanza Riachuelo. En dichas estaciones, con una frecuencia trimestral para el agua superficial y con una frecuencia anual para los sedimentos, se realizan determinaciones instantáneas de campo (OD, pH, conductividad, etc.) y además se toman y acondicionan muestras de agua superficial sin filtrar y de sedimentos superficiales de fondo, las que son posteriormente trasladadas a laboratorio, donde al procesarlas por técnicas analíticas estandarizadas, se realizan determinaciones de más de 50 parámetros entre los que se incluyen, metales pesados (cromo, plomo, cobre, mercurio, etc.), compuestos orgánicos persistentes, hidrocarburos, etc.

Simultáneamente con el monitoreo histórico de parámetros fisicoquímicos, realizados desde el año 2008, en la red de estaciones mencionada y con la frecuencia ya descritas, también se realizan monitoreos para conocer la evolución del ecosistema acuático, particularmente de alguno de los componentes bióticos del mismo. En el monitoreo biótico, se evalúan veinticinco (25) descriptores bióticos sobre las matrices agua y sedimentos, en grupos biológicos representativos como lo son el fitoplancton de agua dulce y el conjunto de macroinvertebrados del bentos.

Con un Contrato obtenido mediante el procedimiento de Licitación pública, que tramitó bajo Expediente ACR: 1308/2014, la empresa EVARSA operará, por un período de dos (2) años, la red ampliada de monitoreo simultáneo de caudal-calidad del agua superficial, de diferentes cursos de la CHMR, que estará compuesta por un total de setenta y tres (73) estaciones fijas de operación manual, dando continuidad al proceso iniciado en diciembre de 2013.



La nueva red de setenta y tres (73) estaciones, tendrá como objetivos la medición sistemática de caudales con una periodicidad mensual y a su vez la realización con una frecuencia bimestral, en forma simultánea con los caudales, determinaciones de la calidad de agua superficial con mediciones directas de campo de nueve (9) parámetros y además realizando análisis en laboratorio sobre las muestras obtenidas, para la determinación mediante la utilización de técnicas analíticas estandarizadas de veintinueve (29) parámetros referentes de la calidad del agua superficial. Durante los dos (2) años de duración del Contrato, el adjudicatario deberá realizar veinticuatro (24) campañas de aforos y doce (12) campañas de determinación de la calidad.

El 01/10/2015 EVARSA ha iniciado formalmente la primera campaña del Contrato referido, acordándose entre ACUMAR y EVARSA, que la misma corresponda a una campaña solo de aforos. A la fecha de presentación del presente informe, la primera campaña del Contrato ha sido concluida y se encuentra en la etapa de procesamiento de los datos generados en la misma.

Como se viene realizando sistemáticamente en el tramo inferior del Riachuelo y en el arroyo Del Rey, el Gobierno de la Ciudad Autónoma de Buenos Aires a través de la APRA y el Municipio de Almirante Brown, respectivamente, continúan realizando mensualmente campañas de monitoreo de agua superficial. Los resultados de dichos monitoreos son recibidos por la Coordinación de Calidad Ambiental (CDCA) de ACUMAR y son cargados y se encuentran disponibles en la <u>Base de Datos Hidrológica de la CMR (BDH)</u>. La Agencia de Protección Ambiental de CABA ha presentado como último <u>informe el correspondiente al monitoreo para el trimestre Junio 2015 - Agosto 2015</u>. El municipio de Almirante Brown ha presentado los resultados del monitoreo realizado en <u>Arroyo del Rey en los meses de Junio, Julio y Agosto de 2015</u>.



#### 1.1. ESTADO DEL AGUA SUPERFICIAL DE LA CUENCA MATANZA RIACHUELO

# 1.1.1 EVALUACION POR SUBCUENCAS DEL PRIMER AÑO DE OPERACIÓN DE LA RED DE 70 ESTACIONES DE OPERACIÓN MANUAL. CAUDALES Y CALIDAD DE AGUA"

En este punto se expondrá una apretada síntesis del Informe Técnico Especial elaborado por la Coordinación de Calidad Ambiental de ACUMAR, denominado "EVALUACION POR SUBCUENCAS DEL PRIMER AÑO DE OPERACIÓN DE LA RED DE 70 ESTACIONES DE OPERACIÓN MANUAL. CAUDALES Y CALIDAD DE AGUA", realizado con los datos generados en el monitoreo simultáneo de calidad-caudal del agua superficial, obtenidos en la red ampliada de setenta (70) estaciones de operación manual, operada entre diciembre de 2013 y noviembre de 2014, ya que el Informe completo se adjunta en formato pdf.

El Informe realiza un análisis por subcuenca de los resultados generados por la red de monitoreo simultáneo de caudal y calidad del agua superficial en setenta (70) estaciones ubicadas en diferentes cursos de agua naturales y de origen antrópico de la Cuenca Hídrica Matanza Riachuelo (CHMR). En especial para el análisis de calidad, se contemplan los valores asociados a calidad del agua superficial (valores de referencia) establecidos por la Res. ACUMAR Nº 3/2009 (Uso IV).

Se considera un (1) año de Contrato con la empresa EVARSA para el período de operación de la red entre diciembre de 2013 y noviembre de 2014, en el cual se generaron doce (12) campañas de medición de caudales dada su periodicidad mensual y seis (6) campañas de determinación de la calidad del agua superficial, realizadas con periodicidad bimestral, en coincidencia y simultaneidad con una campaña de medición de caudal.

Se han utilizado los datos de caudal y calidad generados, considerando a las subcuencas /áreas (14 en total) en las que ha sido dividido el territorio de la CHMR, como las unidades de análisis. Por razones de presentación de los datos, dado el número de estaciones radicadas en la misma, resultó conveniente la subdivisión de la subcuenca Riachuelo en dos áreas: Urbana I y Urbana II.

El Informe ratifica los datos conocidos sobre una marcada variabilidad de los caudales medidos en cada estación, lo cual se ve reflejado en las diferencias entre las medias y las medianas de caudal. Dadas las características de los cursos de agua superficial que componen la CHMR, entre ellas, ser cuerpos de agua lóticos, de llanura, y de una región con clima templado, el origen de la citada variabilidad fundamentalmente se debe al aporte que realizan las precipitaciones al caudal.



A modo conclusivo, se realizó una categorización de cada estación, en función de sus MEDIANAS de caudal. Se han considerado cuatro categorías o rangos de caudal: 0 a 1, 1 a 2, 2 a 3, > 3 m³/seg.

Se concluye que las estaciones ubicadas en el curso principal (**Río Matanza – Riachuelo**), presentaron MEDIANAS más elevadas de caudal, con valores que en general superan a los 3 m³/seg. Esto se explica porque el curso principal, al ser el drenante de la cuenca, es el receptor final de todo el flujo de agua que se tributa directa e indirectamente desde otros cursos de agua de menores dimensiones.

Por otro lado, al analizar las estaciones ubicadas en las subcuencas de la cuenca alta, como por ejemplo la de los arroyos **Rodríguez**, **Cañuelas**, **Cebey**, **Chacón y Morales**, se obtuvieron valores de MEDIANAS de caudal que en su mayoría corresponden a la primera categoría (caudales entre 0 y 1 m³/seg), también en este caso vinculado a su ubicación en la cuenca principal (Cuenca Alta).

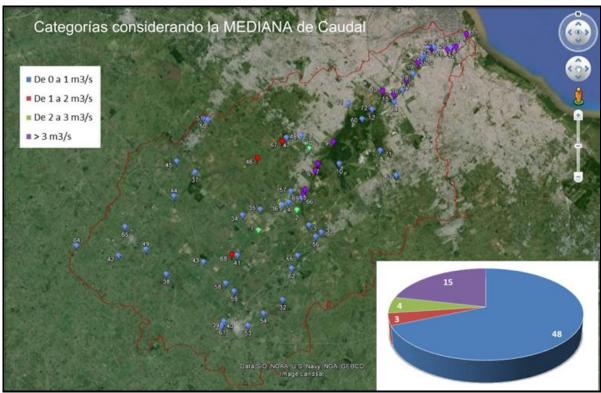



Figura 1.1.1: Mapa con las 70 estaciones clasificadas por categorías considerando la MEDIANA de caudal.



En lo referido a calidad del Agua Superficial y al cumplimiento o no de los valores de concentración para los distintos parámetros con niveles o concentraciones de referencia consignados en el USO IV (Temperatura, pH, Oxígeno Disuelto, Demanda Bioquímica de Oxígeno (DBO<sub>5</sub>), Fósforo Total, Cianuros Totales, Detergentes (SAAM) y Compuestos Fenólicos), se aplicaron empíricamente dos (2) criterios restrictivos:

- Si en una estación dada, la MEDIANA de concentración calculada para al menos uno de los ocho (8) parámetros NO CUMPLE con el valor de referencia asignado para el USO IV, se asume que la estación de monitoreo NO CUMPLE con las concentraciones de dicho USO.
- Si al menos una estación de monitoreo de una subcuenca NO CUMPLE con las concentraciones del USO IV, se asume que la subcuenca NO CUMPLE con las concentraciones consignadas para dicho USO.

Aplicados los dos (2) criterios restrictivos mencionados, se desprende que las estaciones que NO CUMPLEN con las concentraciones del USO IV, se debe a que sus medianas no cumplen con los valores de referencia de dicho USO, y principalmente se debe a tres (3) de los ocho (8) parámetros considerados, que son Oxígeno Disuelto (24 estaciones), DBO<sub>5</sub> (19 estaciones) y Fósforo Total (2 estaciones). Los valores de los restantes cinco (5) parámetros se cumplen para las setenta (70) estaciones.

Se concluye que seis (6) de las quince (15) subcuencas/áreas (se considera a dos subcuencas distintas al Área Urbana I y Área Urbana II en que se subdividió la Subcuenca Riachuelo) cumplen con las concentraciones establecidas como valores de referencia definidos para el USO IV, considerando particularmente la relevancia en el cumplimiento de las concentraciones para el USO IV, a las subcuencas **Cañuelas-Navarrete** y **Morales** (Cuenca Alta), por su propia extensión territorial y porque además poseen ocho (8) estaciones cada una.

Los resultados del análisis referido se resumen en la siguiente tabla:



**Tabla 1.1.1:** Cumplimiento de las concentraciones de USO IV (Res. ACUMAR 03/09) para las subcuencas de la CHMR.

| Categorización Hidrológica | Nº Estaciones<br>x Subcuenca | Cumplimiento de<br>concentraciones<br>fijadas para USO<br>IV - MEDIANAS |
|----------------------------|------------------------------|-------------------------------------------------------------------------|
| SUBCUENCA RODRIGUEZ        | 6                            | no cumple                                                               |
| SUBCUENCA CEBEY            | 6                            | no cumple                                                               |
| SUBCUENCA CAÑUELAS         | 8                            | cumple                                                                  |
| SUBCUENCA CHACÓN           | 6                            | no cumple                                                               |
| SUBCUENCA MORALES          | 8                            | cumple                                                                  |
| SUBCUENCA CAÑADA PANTANOSA | 3                            | cumple                                                                  |
| SUBCUENCA A° BARREIRO      | 1                            | cumple                                                                  |
| SUBCUENCA Aº ORTEGA        | 4                            | no cumple                                                               |
| RÍO MATANZA                | 10                           | no cumple                                                               |
| SUBCUENCA AGUIRRE          | 1                            | cumple                                                                  |
| SUBCUENCA DON MARIO        | 1                            | cumple                                                                  |
| SUBCUENCA STA. CATALINA    | 1                            | no cumple                                                               |
| SUBCUENCA DEL REY          | 1                            | no cumple                                                               |
| RIACHUELO U I              | 7                            | no cumple                                                               |
| RIACHUELO U II             | 7                            | no cumple                                                               |
| 15 SUBCUENCAS / ÁREAS      |                              | 6 Subc. Cumplen<br>Conc. Uso IV<br>(22 Est.)                            |

Considerando que para la actualización del Modelo Hidrodinámico y de Calidad del Agua Superficial a escala de toda la cuenca, y el desarrollo de un modelo a escala de cada una de las subcuencas, resultan imprescindibles los datos generados a partir del monitoreo de la red extendida, siendo estos incorporados en el modelo conceptual y de simulación matemática y que la actualización de esa herramienta es fundamental como soporte para analizar los cambios en las metas de calidad y de uso del agua superficial para la cuenca y sus subcuencas, los resultados obtenidos mediante el análisis descrito, deberán ser contrastados por los que generara el Modelo Hidrodinámico y de Calidad del Agua Superficial.

En el Informe Técnico Especial se incluye a modo de resumen y para graficar los resultados obtenidos de Cumplimiento de Concentraciones de los ocho (8) parámetros de calidad de agua superficial contemplados (por tener concentraciones de referencia) en el USO IV, un mapa, que a continuación se adjunta, donde cada una de las setenta (70) estaciones que componen la red extendida, que operó entre diciembre de 2013 y noviembre de 2014, está representada en color VERDE o ROJO, según el cumplimiento o no de las medianas de concentración consignadas para el USO IV, respectivamente.



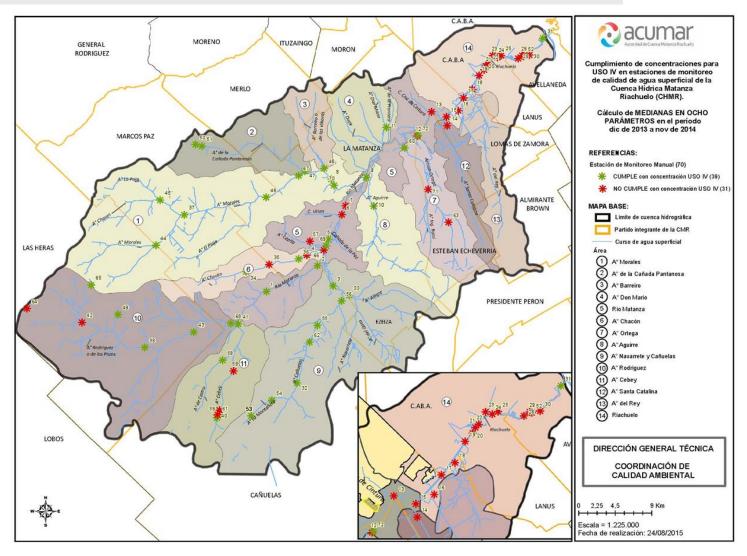



Figura 1.1.1.2: Cumplimiento de las concentraciones de USO IV (Res. ACUMAR 03/09) para las setenta (70) estaciones de monitoreo de agua superficial.



## 1.1.2 MEDICIONES DIRECTAS DE CALIDAD DEL AGUA SUPERFICIAL CON SONDA MULTIPARAMÉTRICA

Entre mediados del mes de julio y septiembre del año 2015, personal de la Coordinación de Calidad Ambiental, ha recorrido las distintas estaciones de monitoreo simultáneo de caudal-calidad del agua superficial, correspondientes a la red ampliada de setenta (70) estaciones que fue operada por EVARSA entre diciembre 2013-noviembre 2014, realizando mediciones directas a campo, utilizando sonda multiparamétrica, para siete (7) parámetros fisicoquímicos. Las características y resultados de esos monitoreos se incluirán en el presente informe.

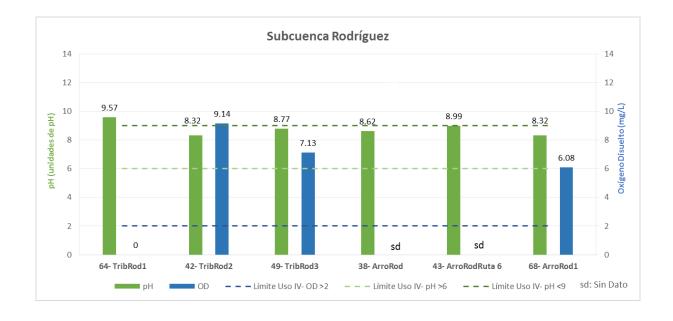
Con la utilización de las sondas multiparamétricas, se midieron en forma directa los siguientes parámetros fisicoquímicos:

- Oxígeno Disuelto (OD)<sup>1</sup>
- Porcentaje de Oxígeno Disuelto (% OD)
- pH
- Temperatura del agua
- Conductividad
- Sólidos disueltos
- Salinidad

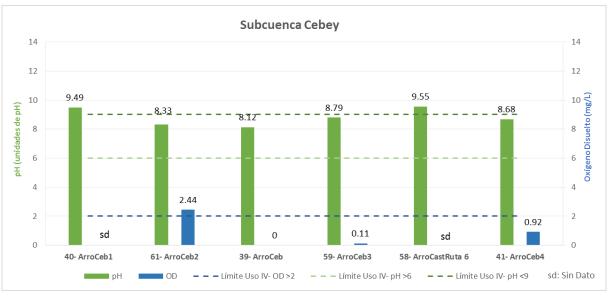
Para el agrupamiento de los datos generados, se seguirá utilizando el de las estaciones donde se realizaron las mediciones en función de la subcuenca/área a la que pertenecen. Se reitera que ACUMAR ha subdividido el territorio de la CHMR en catorce (14) unidades y que a su vez, debido a que la subcuenca Riachuelo incluye un elevado número de estaciones que dificultan su visualización en los gráficos, las catorce (14) estaciones que componen la misma se presentan agrupadas en dos áreas: Urbana I y Urbana II. De esta forma se sigue con el esquema de presentación de datos utilizado en los diferentes Informes Trimestrales presentados al Juzgado Federal, donde se incluyeron los datos generados por la red ampliada de setenta (70) estaciones para caudal y/o calidad del agua superficial.

De los parámetros mencionados, se graficarán dos (2) que, además de ser representativos de la calidad del agua superficial, tienen valores de referencia en el Anexo I de la Resolución 3/2009 de ACUMAR, la cual establece como meta primaria de calidad del agua superficial al USO IV denominado

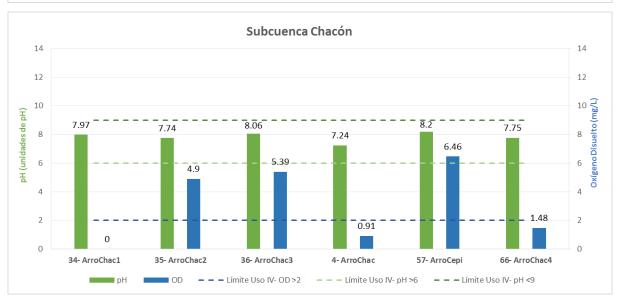
<sup>&</sup>lt;sup>1</sup> Los valores correspondientes a las concentraciones de oxígeno disuelto, al haber sido determinados "in situ", deben ser considerados solamente como indicativos de una tendencia a nivel general y no como definitivos o contrastables con los valores obtenidos en campañas anteriores mediante técnicas analíticas de laboratorio.



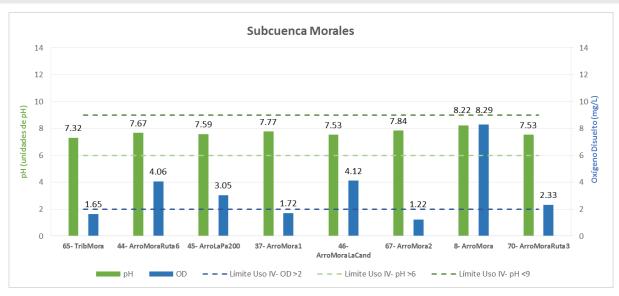

de Recreación Pasiva sin contacto con el agua. Los parámetros seleccionados son Oxígeno Disuelto (OD) medido en mg/litro y el pH dimensionado en unidades de pH.

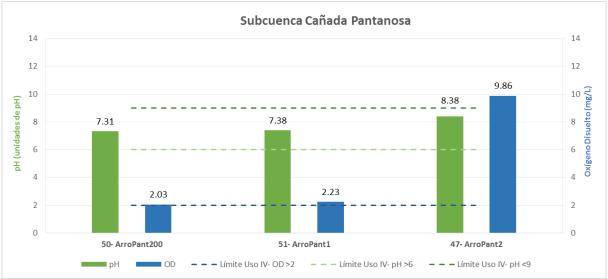

A continuación se adjuntará un gráfico para cada una de las subcuencas /áreas donde se indicarán las estaciones de monitoreo que se ubican en cada una de ellas y los valores que toman cada uno de los mencionados parámetros graficados en cada una de las estaciones, utilizando barras donde quede indicado el valor del parámetro en sus correspondientes unidades. Por otro lado, en cada uno de los gráficos se indicará con una línea punteada el valor de la concentración de OD del Anexo I de la Resolución 3/2009, que es de 2,00 mg/litro, y otras dos (2) líneas correspondientes al rango de pH establecido en el citado Anexo, que para el caso del USO IV se ubica entre 6 -9 unidades de pH.

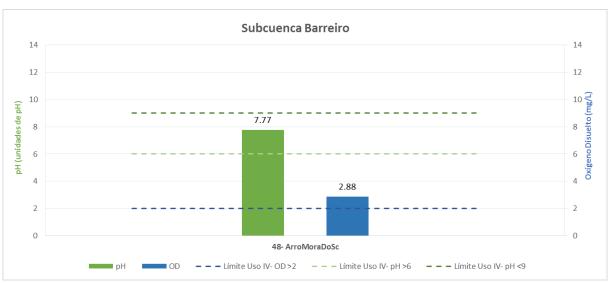
Cabe destacar que, por condiciones climáticas y de acceso a las estaciones de monitoreo, algunas de ellas carecen de información, visualizándose en los gráficos con la etiqueta "sd" (Sin dato). Es importante destacar que de las subcuencas de los arroyos del Rey y Santa Catalina, las cuales poseen una estación cada una, no se presentará gráfico alguno, ya que no hay datos disponibles en ambas estaciones.


Los datos de la totalidad de los siete (7) parámetros monitoreados por la CDCA de ACUMAR utilizando sonda multiparamétrica, se pueden observar en el **Anexo II.** 



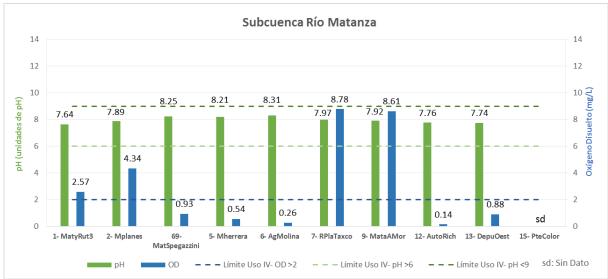


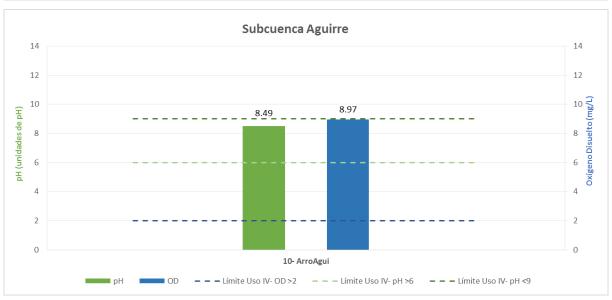



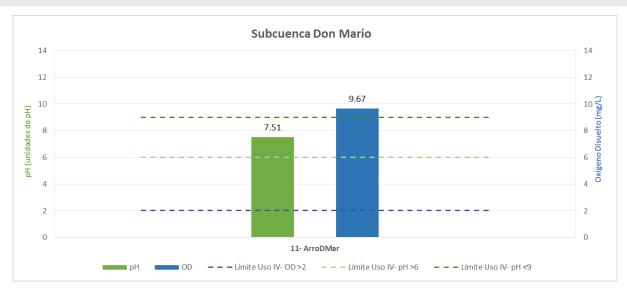


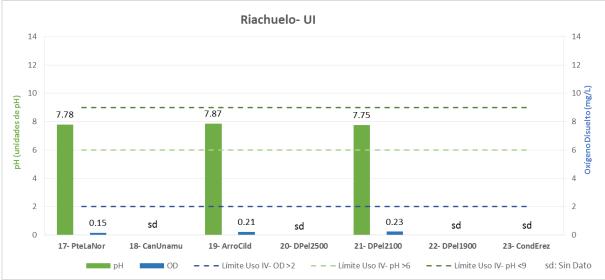


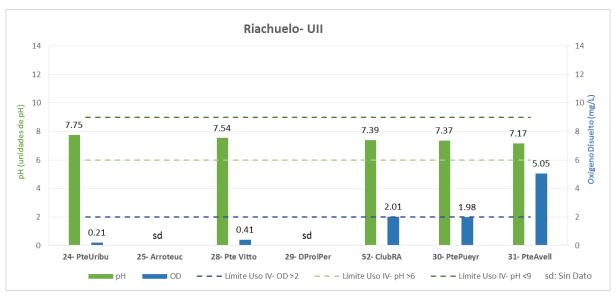







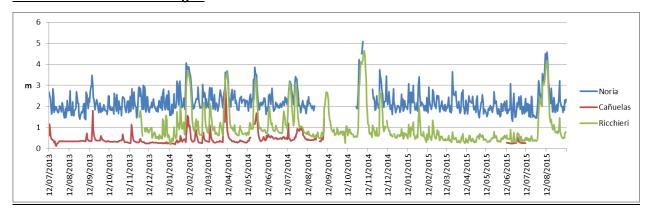












# 1.2. MONITOREO AUTOMÁTICO Y CONTINUO DE CAUDALES Y PARÁMETROS FÍSICO-QUÍMICOS EN LA CUENCA MATANZA RIACHUELO.

En este apartado se grafican los datos acumulados, producto del monitoreo de las estaciones de control continuo y automático de caudal y calidad del agua superficial de Puente La Noria y Arroyo Cañuelas (Máximo Paz) a partir del mes de julio de 2013 y la estación Ricchieri que se puso en marcha a partir de diciembre de 2013, las cuales actualmente tienen continuidad en su operación.

Respecto a la estación de Cañuelas si bien estuvo operando y midiendo durante este trimestre, no hay registros por escrito de datos debido a que el 11 de julio de 2015 se venció el contrato anterior, el cual fue renovado a fines de septiembre de 2015, obteniendo el primer informe a fines de octubre de 2015.

Para evitar cargar el informe con gráficos individuales por estación automática y continua, se incluyen juntos los datos de las tres (3) estaciones mencionadas en una única gráfica para cada uno de las variables monitoreadas.

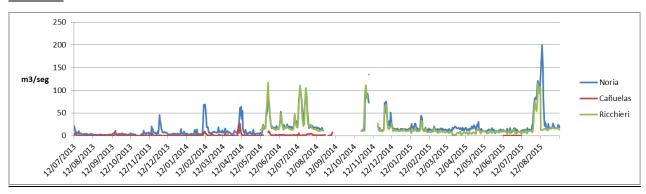
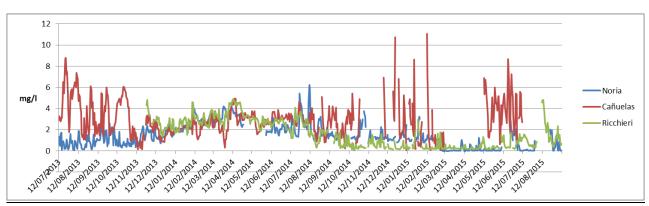
#### Nivel o altura del curso de agua

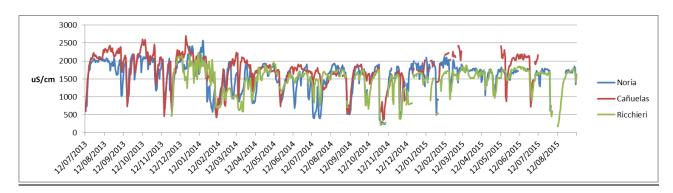


**Figura 1.2.1.** Variaciones en el nivel del curso de agua en metros (m) en las estaciones Puente La Noria, Cañuelas y Ricchieri, referenciado a valores relativos.



#### **Caudales**

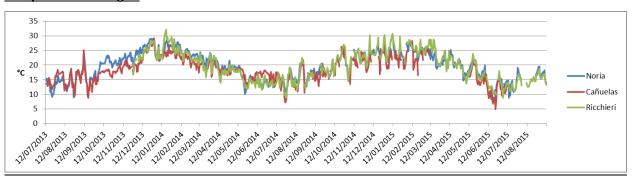





Figura 1.2.2. Caudales acumulados, producidos por las estaciones de Puente La Noria, Cañuelas y Ricchieri.

#### Oxígeno Disuelto (OD)

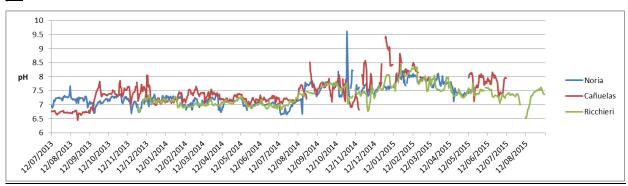


**Figura 1.2.3.** Variaciones en la concentración de Oxígeno Disuelto (OD) en mg/litro en las estaciones Puente La Noria, Cañuelas y Ricchieri.


#### Conductividad

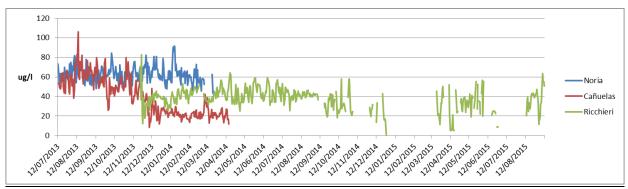


**Figura 1.2.4.** Variaciones en la Conductividad en micro siemens /centímetro (μS/cm) en las estaciones Puente La Noria, Cañuelas y Ricchieri.




#### Temperatura del agua




**Figura 1.2.5.** Variaciones en la Temperatura del agua en grados centígrados (°C) en las estaciones Puente La Noria, Cañuelas y Ricchieri.

#### <u>pH</u>



**Figura 1.2.6.** Variaciones en el pH del agua en unidades de pH en las estaciones Puente La Noria, Cañuelas y Ricchieri. Durante este trimestre no se realizaron mediciones de pH en La Noria debido a que el sensor presentó una falla irreversible, al respecto se compró un nuevo sensor y por las demoras en la importación está llegando al país a fines de octubre.

#### Concentración de Cromo (Cromo Total)



**Figura 1.2.7.** Variaciones en la concentración de Cromo Total en μg/litro (en las estaciones Puente La Noria, Cañuelas y Ricchieri). Las estaciones Puente de la Noria y Cañuelas cuentan con menos datos de medición porque el equipo de cromo de la Cañuelas está en proceso de reparación y el equipo de cromo de la Noria también fue enviado a reparación pero ya se encuentra operando a partir de octubre de 2015.



#### 2. MONITOREO DE AGUA SUBTERRÁNEA.

El "Programa de Monitoreo Integrado de Calidad de Agua Subterránea en la CMR" es una de las líneas de acción que se incluyen en el Plan Integral de Saneamiento Ambiental de la Cuenca Matanza Riachuelo (PISA).

En este punto se resumen las principales actividades desarrolladas en relación a la ejecución de dicho programa, presentando en este caso los resultados obtenidos en la cuarta campaña de monitoreo del agua subterránea<sup>1</sup> en la CMR realizada entre los meses de febrero y marzo de 2015 (campaña de la estación verano).

Dicho monitoreo tiene como objetivo incrementar el conocimiento de la dinámica y calidad del agua de los acuíferos Freático y Puelche. Los registros de niveles y calidad del agua subterránea constituyen insumos básicos para detectar las afectaciones producidas por las extracciones de agua y la detección/evolución de elementos y sustancias en los acuíferos, provenientes de una fuente natural o producto de las acciones antrópicas.

La **Figura 2.1** permite ver la conformación de la red de monitoreo, para esta campaña del año 2015, mientras que en el Anexo IV se presenta el listado de pozos de la red de ACUMAR con sus respectivas coordenadas y ubicación geográfica.

1

<sup>&</sup>lt;sup>1</sup> El monitoreo de agua subterráneas incluye las unidades acuíferas del freático y el Puelche ya que constituyen un sistema hidrológico caracterizado por presentar continuidad hidráulica. El acuífero freático reviste fundamental importancia en el sistema ya que interactúa con los cuerpos de agua superficiales, sus profundidades guardan relación directa con las precipitaciones y es el elemento activo en la transferencia de agua y potenciales contaminantes hacia el acuífero inferior (Puelche).



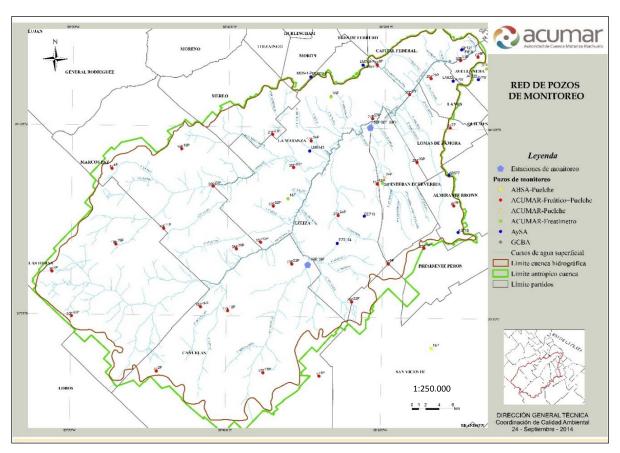


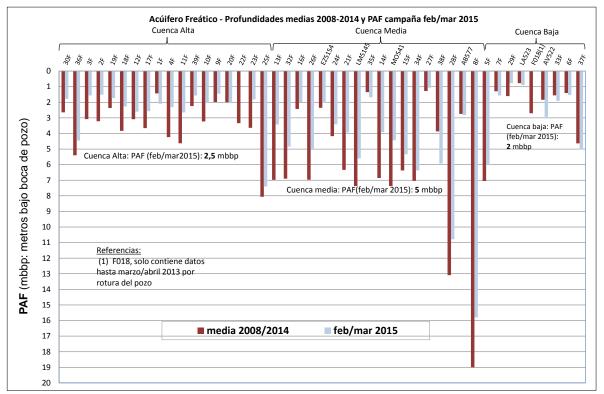

Figura 2.1 Red de pozos de monitoreo campaña verano (febrero/marzo) 2015. <u>Fuente</u>: Elaboración propia, a partir del diseño de la red de monitoreo de agua subterránea.

Se presentan entonces los resultados de la campaña de la estación de verano realizada por el Instituto Nacional del Agua (INA), quien ha ejecutado dicha campaña entre el 23 de febrero y el 10 de marzo de 2015. Los resultados incluyen los registros medios de las profundidades del agua de los acuíferos Freático y Puelche entre 2008-2015 comparados con la última campaña, además se incorporan mapas con el sentido de escurrimiento del agua subterránea de ambos acuíferos y el análisis de los resultados obtenidos de los monitoreos de calidad del agua subterránea.

#### 2.1. Registros de las profundidades del agua.

Los registros históricos iniciados por ACUMAR desde el año 2008 a la fecha, permiten analizar el comportamiento respecto de las variaciones de las profundidades del agua (PA) en los acuíferos Freático y Puelche. Si bien los registros de niveles de la estación de verano han sido reportados en el




informe anterior, a continuación se presenta una comparativa entre las PA medias entre 2008-2015 y las PA resultantes de la campaña de verano de 2015.

Respecto de las precipitaciones, los datos disponibles de la Estación Meteorológica Ezeiza, registran entre los años 1946 y 2013 un promedio de 984 mm/año. Si se toma el período 1946 a 2014 el promedio se eleva a 992 mm/año producto de cambio en el régimen pluviométrico del año 2014 que arrojó una precipitación de 1520 mm/anuales.

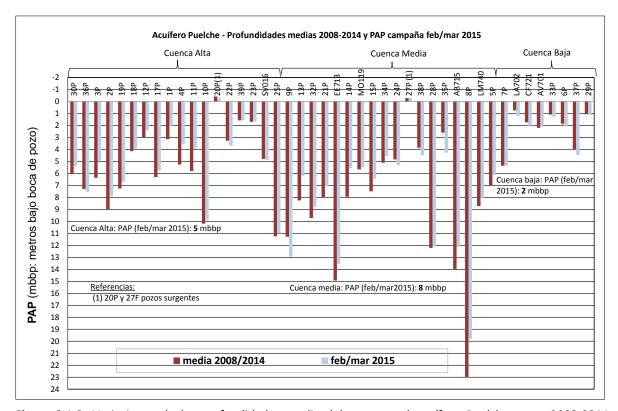
A continuación se presentan una serie de gráficos que permiten visualizar ascensos en las PA debido al incremento de las precipitaciones. Estos ascensos se observan en los pozos de la cuenca alta y media, principalmente en el acuífero Freático, y en forma más atenuada en el Puelche, mientras que en la cuenca baja las oscilaciones de las PA no responden directamente con las precipitaciones.

#### Acuífero Freático

En el gráfico de la Figura 2.1.1 se presenta una comparativa entre las profundidades medias del agua en el Freático entre 2008-2014 y las profundidades del agua freática (PAF) obtenidas en la campaña febrero/marzo 2015.



**Figura 2.1.1.** Variaciones de las profundidades media del agua en el acuífero Freático entre 2008-2014 y registros PAF de la campaña febrero/marzo de 2015. PAF en metros bajo la superficie del terreno o metros bajo la boca del pozo (mbbp). <u>Fuente</u>: Elaboración propia a partir de registros de niveles históricos.



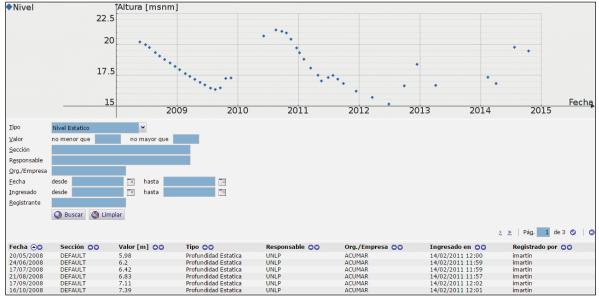

En el gráfico de la figura 2.1.1, si se comparan las profundidades medias para el período 2008-2014 o medias históricas y las PAF para la campaña febrero/marzo 2015 surge que: en la cuenca alta las PAF rondan los 2,5 metros, las cuales reflejan un ascenso respecto de las medias históricas que registran 3,5 metros para ese sector de la cuenca. En la cuenca media las PAF están en el orden de los 5,0 metros, representando un ascenso si se las compara con los 6,5 metros que registran las medias históricas. En cuenca baja las PAF y los promedios históricos registran, en ambos casos, valores del orden de los 2,0 metros.

Tal como ya se apuntara, las precipitaciones inciden directamente las PAF como resultado de un período (año 2014) de mayores precipitaciones, situación que se manifiesta principalmente en los pozos de cuenca media y alta.

#### • Acuífero Puelche

El gráfico de la Figura 2.1.2 presenta una comparativa entre las profundidades medias del agua en el Puelche entre los años 2008-2014 y las profundidades del agua del Puelche (PAP) obtenidas durante la campaña febrero/marzo 2015.




**Figura 2.1.2.** Variaciones de las profundidades media del agua en el acuífero Puelche entre 2008-2014 y registros de las PAP en la campaña febrero/marzo de 2015. PAP en metros bajo la superficie del terreno o metros bajo la boca del pozo (mbbp). <u>Fuente</u>: Elaboración propia a partir de registros de niveles históricos.



Del análisis del gráfico de la figura 2.1.2 se puede observar que: en la cuenca alta las PAP rondan los 5,0 metros reflejando un leve ascenso respecto de los valores medios históricos que registran 5,5 metros. Se apartan de los valores medios los pozos 2P, 9P, 10P, 19P, 25P y 36P que registran mayores profundidades debido a las extracciones de agua subterránea para abastecimiento. En la cuenca media las PAP están en el orden de los 8,0 metros, representando también un leve ascenso si se las compara con los 8,5 metros de los valores medios históricos. En los pozos 8P, AB715, EE713, LM740 y 32P las PAP superan los valores medios debido a la utilización del acuífero Puelche para abastecimiento. En cuenca baja las PAP en febrero/marzo de 2015 y los registros históricos exhiben similares valores, los cuales rondan los 2,0 metros.

En el acuífero Puelche la incidencia de un año con mayores precipitaciones se manifiesta de manera leve en las PAP de los pozos de la cuenca alta y media, mientras que en la cuenca baja las oscilaciones de los niveles no se encuentran directamente relacionados con las precipitaciones.

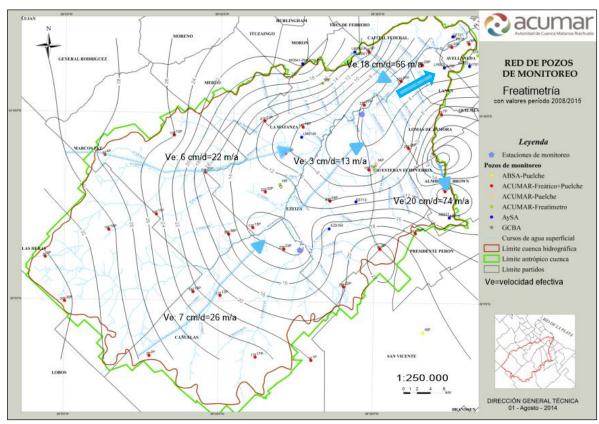
El comportamiento dinámico en cada uno de los pozos que conforman la red de monitoreo de ACUMAR se puede observar en la <u>Base de Datos Hidrológica</u>.



**Figura 2.1.3.** Gráficos de variación de niveles disponibles en la <u>Base de Datos Hidrológica</u> de la CMR. Profundidades en metros sobre el nivel del mar (msnm).

Fuente: Elaboración propia a partir de los gráficos obtenidos de la BDH.

En el gráfico de la Figura 2.1.3 se puede analizar, para cada pozo, el comportamiento de los niveles de agua en función del tiempo e identificar las oscilaciones de dichos niveles en respuesta a las precipitaciones y/o extracciones. Los registros de las distintas campañas observan una depresión de



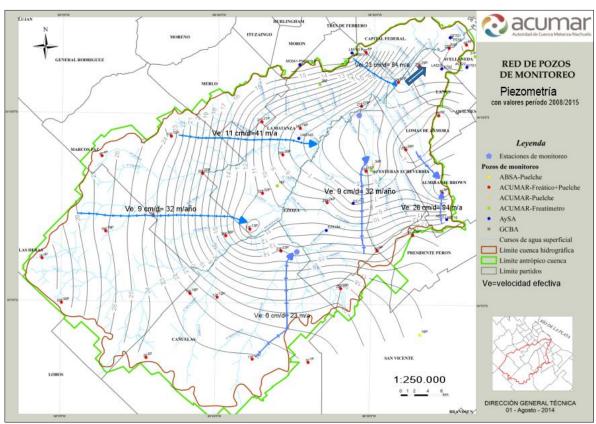

los niveles en ambos acuíferos en la zona de Almirante Brown, en los partidos de Marcos Paz, Ezeiza, Esteban Echeverría, Lomas de Zamora y La Matanza producto de la utilización de agua subterránea para abastecimiento.

A continuación se presentan una serie de mapas en los cuales se grafican las curvas de los niveles freáticos (mapa freatimétrico para el acuífero freático) y los niveles piezométricos (mapa piezométrico para el Acuífero Puelche). Dichos mapas surgen de la diferencia entre la profundidad del agua (PA) en metros bajo la boca del pozo (mbbp) y la cota de boca del pozo (referida al cero IGM o nivel del mar), obtieniéndo así la cota del nivel del agua experesada como metros sobre el nivel del mar (msnm), tanto para el acuífero freático como para el Puelche. Estos mapas permiten analizar el sentido de flujo de ambos acuíferos, cuya dirección es desde las áreas de mayores niveles o potenciales, hacia las áreas de menores pontenciales. Además, el análisis de los mapas contribuye a determinar las velocidades efectivas del agua subterránea en distintos lugares de la cuenca.

En la Figura 2.1.4 se presenta el mapa freatimétrico de la cuenca construído con valores promedios de los niveles freáticos entre el inicio de los monitoreos (año 2008) y los registros de la última campaña (febrero/marzo de 2015). Del análisis de las curvas en dicho mapa surge el sentido de flujo y las velocidades medias (estimadas) del agua en el acuífero Freático.






**Figura 2.1.4.** Mapa freatimétrico con registros de niveles freáticos entre 2008 y 2015. Sentido flujo freático (local y regional) y velocidades efectivas del agua.

<u>Fuente</u>: Elaboración propia a partir de cota de boca de pozo (referida al 0 IGM) y profundidades del agua del acuífero Freático desde el inicio del monitoreo.

Las velocidades efectivas del agua en la cuenca alta, se estiman en valores de los 6 y 7 cm/día, mientras que hacia la cuenca media y baja dichas velocidades disminuyen a 3 cm/día, debido a una menor pendiente del terreno y a que el acuífero Freático se encuentra alojado en sedimentos finos. A la vez que hacia el sudeste, en la zona de Lomas de Zamora y Almirante Brown, se observan conos de depresión con inversión del flujo del acuífero y aumento en las velocidades a valores del orden de los 20 cm/día, debido a la explotación de agua subterránea para distintos usos. También se registra un importante aumento de la velocidad del agua en el límite de la cuenca media y baja, en donde se registrán velocidades del orden de los 18 cm/día, debido a una mayor pendiente del terreno en esa zona.

En la Figura 2.1.5 se presenta el mapa piezométrico construido con las curvas de niveles piezométricos (promedio) entre 2008 y 2015. De dicho mapa surge el sentido de flujo y las velocidades medias del agua (estimadas) en el acuífero Puelche.





**Figura 2.1.5.** Mapa piezométrico con registros de niveles de agua en el Acuífero Puelche entre 2008 y 2015. Sentido flujo freático (local y regional) y velocidades efectivas del agua.

<u>Fuente</u>: Elaboración propia a partir de cota de boca de pozo (referida al 0 IGM) y profundidades del agua del acuífero Puelche desde el inicio del monitoreo.

El análisis del mapa piezométrico, permite estimar las velocidades efectivas del agua del acuífero Puelche cuyos valores en cuenca alta oscilan entre 6 y 9 cm/día, mientras que hacia la cuenca media estos valores tienden a incrementar a 11 cm/día debido a la utilización del acuífero Puelche para abastecimiento. Al igual que el comportamiento observado para el acuífero Freático, hacia el sector el sudeste, en la zona de Lomas de Zamora y Almirante Brown, el Puelche presenta conos de depresión, inversión del movimiento de flujo de agua en el acuífero y aumento en las velocidades a valores del orden de los 26 cm/día, debido a las explotaciones. Sobre la margen izquierda del Rio Matanza en el límite de la cuenca media y baja se registra un importante aumento de la velocidad del agua, a valores del orden de los 23 cm/día, debido a una mayor pendiente del terreno en ese sector de la cuenca.

En general y para ambos acuíferos se observa un sentido de flujo local hacia los cursos de agua principales mientras que regionalmente la dirección de flujo predominante es hacia el Este-noreste.



#### 2.2. Monitoreo de la Calidad de las Aguas subterráneas

Durante la ejecución de la campaña de monitoreo de verano 2015, el INA recolectó muestras y realizó las determinaciones analíticas correspondientes, los resultados obtenidos han sido validados por la Coordinación de Calidad Ambiental y utilizados para la elaboración del presente informe trimestral.

Los datos de calidad del agua subterránea de todas las campañas realizadas por ACUMAR desde el año 2008 a la fecha pueden consultarse y descargarse en la <u>Base de Datos Hidrológica.</u>

A continuación se presentan una serie de imágenes correspondienteas a la ejecución de la campaña de monitoreo de la estación de verano de 2015.

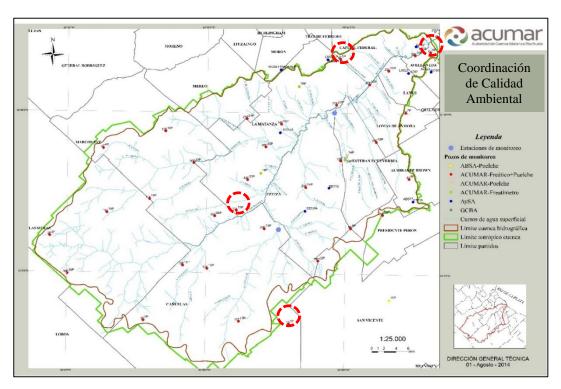




**Figura 2.2.1**. Imágenes del desarrollo de la campaña de verano de 2015. Purgado de pozos y rotulaciones de muestras en pozos ubicados en La Matanza y Merlo.



#### 2.3. Registros históricos entre 2008 y Febrero/Marzo de 2015.


La instalación de la red de pozos de monitoreo en la cuenca Matanza-Riachuelo (CMR) ha permitido ejecutar campañas estacionales, en las cuales se obtienen registros de profundidades del agua (PA) y determinaciones de parámetros químicos. En el diseño de la red de pozos se han aplicado criterios que contemplan las modificaciones del ciclo hidrológico derivada de los usos del suelo y del agua subterránea. Este diseño de la red y la ejecución de las distintas campañas de monitoreo, desde el año 2008 a la fecha, contribuyeron a aumentar el conocimiento de la dinámica y calidad del agua subterránea de la CMR.

A continuación se presenta un resumen con los registros de los monitoreos realizados en cuatro sitios de la cuenca que se seleccionaron como representativos de las condiciones del agua subterránea, en los cuales se puede detectar la influencia de los distintos usos del suelo/agua en la dinámica y calidad de los acuíferos Freático y Puelche.

Así, por ejemplo, para la cuenca alta se seleccionó el sitio de monitoreo 1F-1P el cual representa las condiciones del agua subterránea en áreas rurales, en cuenca media los sitios de los pozos 13F-13P y 5F-5P representando el comportamiento y calidad del agua subterránea en zonas urbanizadas, y en cuenca baja se seleccionaron los pozos 6F y 6P que exhiben condiciones del agua en la zona de descarga del sistema hídrico subterráneo. (Ver ubicación en figura 2.3.1)

Los registros obtenidos se presentan en una serie de gráficos en los que se incluyen los cuatro sitios mencionados con los resultados de los monitoreos entre 2008 y febrero/marzo 2015. Dichos gráficos contienen las medidas de profundidades del agua (PA), conductividad eléctrica (CE), cloruros (Cl<sup>-</sup>), sulfatos (SO<sub>4</sub><sup>=</sup>), nitratos (NO<sub>3</sub><sup>-</sup>) y nitrógeno amoniacal (N-NH<sub>3</sub>).





**Figura 2.3.1.** Localización de los cuatro sitios seleccionados, representados por los pozos de monitoreo 1F -1P, 13F-13P, 5F-5P y 6F-6P.

#### Cuenca Alta-Pozos 1F y 1P

El sitio de monitoreo de los pozos 1F y 1P se localiza en una zona rural de la cuenca alta del Matanza-Riachuelo a unos 14 km al este-sudeste del casco urbano del municipio de Cañuelas. Entorno a los pozos se observan parcelas donde el uso del suelo es principalmente agrícola-ganadero, con muy baja densidad poblacional, destacándose la traza de la ruta 6 que cruza el área en sentido este-oeste. En la Figura 2.3.2 se muestra la localización de los pozos 1F -1P en la cuenca alta y su entorno.



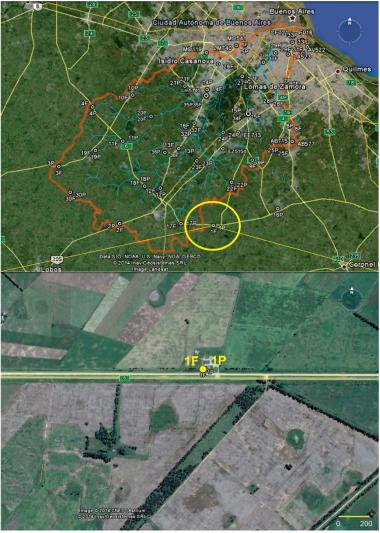



Figura 2.3.2. Ubicación de los pozos 1F y 1P al sudeste de Cañuelas.

Profundidad del Agua (PA) y Conductividad Eléctrica (CE)

En la Figura 2.3.3 se presentan las variaciones temporales de PA y CE en pozos al acuífero Freático (1F) y Puelche (1P) ubicados en cuenca alta.



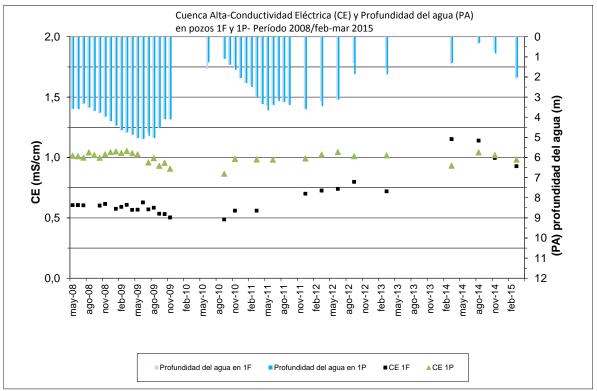



Figura 2.3.3. Cuenca Alta. Profundidad del Agua (PA) y Conductividad Eléctrica (CE) en pozos 1F y 1P.

En relación a las profundidades del agua (PA) en los pozos 1F y 1P, y tal como se observa en los monitoreos anteriores, se producen oscilaciones de dichas PA en respuesta a las precipitaciones y a la evapotranspiración. En general, en ambos acuíferos, las mayores PA rondan los 5,0 m, las mínimas están en el orden de los 0,5 m y el promedio se sitúa en valores levemente superiores a los 3,0 m. En la campaña febrero/marzo 2015, debido un aumento en la evapotranspiración en la estación de verano, se observa una leve profundización del agua (PA) en ambos acuíferos respecto de las campañas anteriores.

En el acuífero Freático (1F), la CE hasta la campaña de marzo 2013 registró un valor promedio de  $0,613~\text{mS/cm}=~613~\mu\text{S/cm}$ , presentando variaciones estacionales que se relacionan con las profundidades del agua, oscilando entre un máximo aislado del orden de los  $0,8~\text{mS/cm}=~800~\mu\text{S/cm}$  y mínimos de  $0,5~\text{mS/cm}=~500~\mu\text{S/cm}$ . Se destaca un aumento significativo de este parámetro en marzo/abril y en julio/agosto 2014, donde se detectaron valores que se apartan de los registros medios, arrojando una CE de  $1,10~\text{mS/cm}=~1100~\mu\text{S/cm}$ . Este aumento en la CE es a causa de un cambio en el uso del suelo por disposición de residuos orgánicos en proximidades del sitio de monitoreo.



En el acuífero Puelche la CE registra muy leves oscilaciones, respecto del Freático, oscilando entre un máximo de 1,056 mS/cm=  $1056~\mu$ S/cm y un mínimo de 0,866 mS/cm=  $866~\mu$ S/cm, con promedios del orden de 1,0 mS/cm=  $1000~\mu$ S/cm.

Profundidad del Agua (PA) y Cloruros (Cl<sup>-</sup>)

En la Figura 2.3.4 se presentan las variaciones temporales de PA y Cl<sup>-</sup> en pozos al acuífero Freático (1F) y al acuífero Puelche (1P) ubicados al este de la cuidad Cañuelas en cuenca alta.

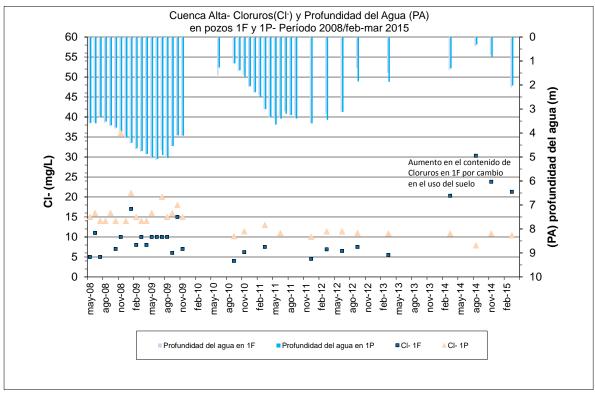



Figura 2.3.4. Cuenca Alta. Profundidad del Agua (PA) y Cloruros (Cl<sup>-</sup>) en pozos 1F y 1P.

En el acuífero Freático (1F), en el período que va de mayo 2008 a febrero/marzo 2013, la mayor parte de los valores de Cl<sup>-</sup> oscilaron entre 4,0 y 10 mg/l con promedio de 8,0 mg/l. Se destacan las cuatro últimas campañas en donde se producen significativos incrementos en las concentraciones de cloruros, con valores por encima de los 20 mg/l, llegando a un máximo de 30 mg/l. En el acuífero Puelche, los valores registrados en todo el período de análisis (incluida la última campaña - febrero/marzo 2015) oscilan entre 8 y 18 mg/l. Se observa que, en ambos acuíferos, las oscilaciones entre los valores de concentración responden a las precipitaciones, siendo estas respuestas más acentuadas en el Freático que en el Puelche. Los incrementos en las concentraciones de cloruros, por



encima de los valores promedios para el Freático, son producto de un cambio en el uso del suelo en la zona próxima al sitio de monitoreo (aplicación de cobertura de materiales orgánicos sobre el suelo).

Profundidad del Agua (PA) y Sulfatos (SO<sub>4</sub>=)

En la Figura 2.3.5 se presentan las variaciones temporales de PA y  $SO_4$ <sup>=</sup> en pozos al acuífero Freático (1F) y al acuífero Puelche (1P) ubicados en cuenca alta, al este del partido de Cañuelas.

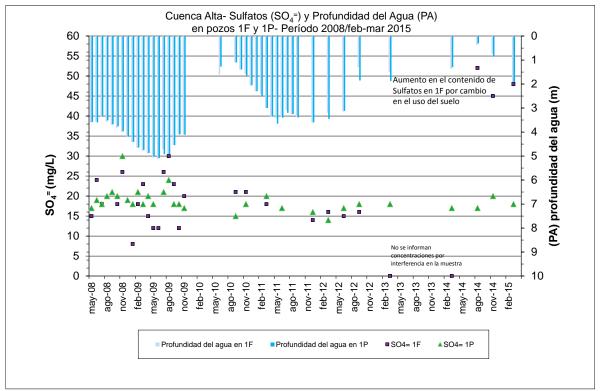



Figura 2.3.5. Cuenca Alta. Profundidad del Agua (PA) y Sulfatos (SO<sub>4</sub>=) en pozos 1F y 1P.

Las concentraciones de sulfatos en el acuífero Freático (1F), de mayo 2008 a julio/agosto 2014, detectan valores, que en su gran mayoría, oscilan entre 8,0 y 30 mg/l, con promedios del orden de los 20 mg/l. Desde julio/agosto 2014 a febrero/marzo de 2015 se han detectado importantes incrementos en las concentraciones de sulfato con valores que van de 45 a 52 mg/l. Este incremento en los contenidos de sulfatos en el agua freática se produce por la aplicación de material orgánico sobre la superficie del suelo en las proximidades del sitio de monitoreo.

En el acuífero Puelche, entre mayo de 2008 y febrero/marzo de 2015, los contenidos de sulfatos oscilan entre 14 y 25 mg/l, con un máximo aislado de 30 mg/l.



Respecto del contenido de sulfatos, el acuífero Freático presenta leves variaciones estacionales y en las tres últimas campañas se observan incrementos en las concentraciones debido a la migración de estos aniones provenientes de los materiales esparcidos en superficie. Mientras que en el Puelche los (SO<sub>4</sub>=) presentan valores con variaciones estacionales mucho más atenuadas, manteniéndose sus concentraciones dentro de los valores promedio.

Profundidad del Agua (PA) y Nitratos (NO<sub>3</sub>-)

En la Figura 2.3.6 se presentan las variaciones temporales de PA y NO<sub>3</sub> en pozos al acuífero Freático (1F) y al acuífero Puelche (1P) ubicados al este del partido de Cañuelas en cuenca alta.

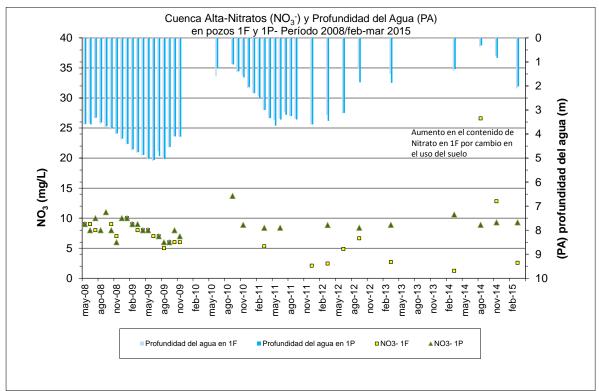



Figura 2.3.6. Cuenca Alta. Nitratos(NO<sub>3</sub>=) y Profundidad del Agua (PA) en pozos 1F y 1P.

Los nitratos en el acuífero Freático (1F), en el período mayo 2008-febrero/marzo 2014 registraron concentraciones que oscilaron 1,2 y 10 mg/l, con promedio de 7,5 mg/l. Entre julio/agosto 2014 y octubre/noviembre 2014 los valores se han apartado significativamente del promedio detectándose 26,6 y 12,8 mg/l respectivamente. Estos incrementos son producto de la migración de los nitratos provenientes de los materiales orgánicos esparcidos en suelo superficial de la zona próxima al pozo



1F. En el acuífero Puelche, entre mayo 2008 y febrero/marzo 2015, las concentraciones de nitratos se mantienen entre los valores históricos, oscilando entre 6 y 13,7 mg/l y promedios de 8,6 mg/l

#### Nitrógeno Amoniacal (N-NH<sub>3</sub>)

El acuífero Freático, en el pozo 1F, entre mayo de 2008 y marzo de 2013, las concentraciones de N-NH<sub>3</sub> registraron valores inferiores a 0,03 mg/l, que es el límite de detección de la metodología empleada para su determinación. A partir de la campaña de marzo/abril de 2014 y en las tres campañas subsiguientes se han detectado valores entre 0,44 y 3,73 mg/l de N-NH<sub>3</sub>.

Para el Puelche, pozo 1P, desde mayo de 2008 hasta marzo de 2013 las concentraciones de N-NH<sub>3</sub> se encuentran por debajo del límite de detección (menos de 0,03 mg/l) mientras en las campañas del año 2014-febrero/marzo y julio/agosto- las concentraciones de N-NH<sub>3</sub> han incrementado sus valores a 0,73 y 0,11 mg/l respectivamente. Posteriormente, en las dos últimas campañas-octubre/noviembre 2014 -febrero/marzo 2015- los contenidos de N-NH<sub>3</sub> han disminuido significativamente, encontrándose entre valores inferiores al límite de detección (menos de 0,03 mg/l) y concentraciones apenas detectables (menos de 0,09 mg/l).

Los incrementos por encima de los valores medio de: CE, Cl<sup>-</sup>, SO4<sup>=</sup> y NO<sub>3</sub><sup>=</sup> junto con la presencia de N-NH<sub>3</sub>, (en ambos acuíferos) detectados en las campañas de monitoreo arriba indicadas, se debe a la acumulación, disposición y esparcido materiales orgánicos en las proximidades de los sitios de los pozos de monitoreo 1F y 1P.

# Cuenca Media-Pozos 13F y 13P

Los pozos 13F y 13P, se localizan en el sector medio de la CMR dentro del barrio San Carlos, en la localidad de Virrey del Pino, partido de La Matanza. En el entorno de los pozos el uso del suelo es predominantemente urbano, presentándose como rasgo distintivo la traza de la ruta 3 y sus colectoras. Se distinguen tres sectores: en el sector norte-noroeste de la ruta, se desarrolla el B° San Carlos compuesto por viviendas familiares, que ocupan la totalidad de las manzanas del barrio, con un escaso desarrollo de los servicios de agua de red y cloacas. En el sector este-sudeste, con menor densidad de viviendas, se emplaza un barrio cerrado con grandes espacios verdes y arboledas. Hacia el sector noreste, del sitio de emplazamiento de los pozos, se distinguen parcelas con labranzas. Hacia el sudoeste se presentan parcelas arboladas y un área donde se llevan a cabo actividades



extractivas de suelo (cantera), al sur, limitando con el barrio privado y la cantera, se distingue el curso de agua del Río Matanza. En la Figura 2.3.7, se muestra la localización de los pozos 13F -13P y su entorno.



Figura 2.3.7. Ubicación de los pozos 13F y 13P en el partido La Matanza.

• Profundidad del Agua (PA) y Conductividad Eléctrica (CE)

En la Figura 2.3.8 se presentan las variaciones temporales de las PA y los registros de CE en pozos al acuífero Freático (13F) y Puelche (13P) en el partido de La Matanza (cuenca media).



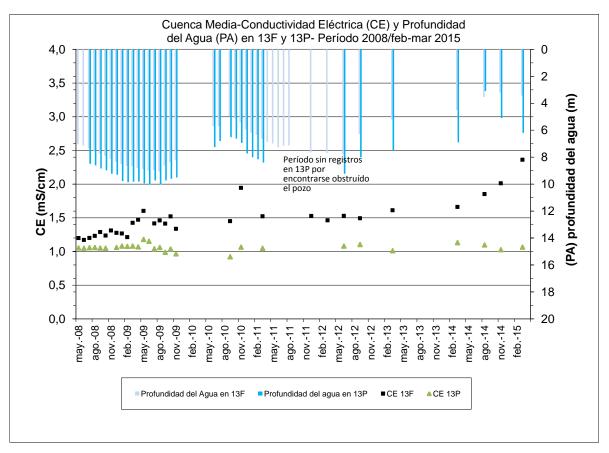



Figura 2.3.8. Cuenca Media. Profundidad del Agua (PA) y Conductividad Eléctrica (CE) en pozos 13F y 13P.

En el acuífero Freático, las profundidades del agua (PA) del pozo 13F, oscilaron entre máximos del orden de 9 m y mínimos de 3 m, valores estos que se corresponden con las últimas campañas. El promedio se mantiene en 7 m observando marcadas variaciones estacionales concordantes con los períodos de mayores o menores precipitaciones. Se observa en las últimas campañas un marcado ascenso de los niveles respecto de los valores históricos. Por su parte en el acuífero Puelche, pozo 13P, las variaciones de las profundidades del agua oscilan entre máximos que rondan los 10 m, con mínimo aislado de 3 m y promedio de 8 m. Si bien las oscilaciones de las PA responden a variaciones estacionales, dichas profundidades se encuentran influenciadas por las extracciones para consumo por parte de la población que utiliza ambos acuíferos para abastecimiento. Los ascensos de las PA en ambos acuíferos registrados en las tres últimas campañas se relacionan con la recarga/recuperación de los acuíferos.

En el acuífero Freático (pozo 13F), en el intervalo que va desde los inicios del monitoreo (mayo 2008) y verano de 2014 (febrero/marzo) la CE presenta escasas variaciones estacionales y los valores se agrupan en el rango de 1,17 mS/cm= 1170  $\mu$ S/cm y 1,6 mS/cm= 1600  $\mu$ S/cm. Desde verano de 2014



la CE en el Freático, registra un paulatino ascenso, desde valores de 1,61 mS/cm= 1610  $\mu$ S/cm a un máximo de 2,36 mS/cm= 2360  $\mu$ S/cm valor éste, registrado en febrero/marzo de 2015. El comportamiento de las relaciones PA/CE en el acuífero Freático permite distinguir que los ascensos de las PA ha incrementado el valor de la CE, lo cual podría estar asociado a la recarga del acuífero con aguas con mayor contenido salino.

En el acuífero Puelche (pozo 13P) no se han observado variaciones significativas en la CE a lo largo del período monitoreado (mayo 2008-febrero/marzo 2015), manteniéndose los valores en un promedio de 1,06 mS/cm=  $1060 \mu$ S/cm.

# Profundidad del Agua (PA) y Cloruros (Cl<sup>-</sup>)

En la Figura 2.3.9 se presentan las variaciones temporales de las PA y concentraciones de Cloruros (Cl<sup>-</sup>) en pozos al acuífero Freático (13F) y al acuífero Puelche (13P) ubicados en cuenca media.

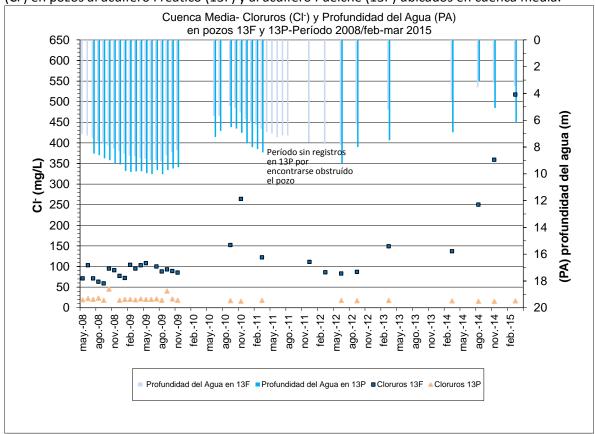



Figura 2.3.9. Cuenca Media. Profundidad del Agua (PA) y Cloruros (Cl<sup>-</sup>) en pozos 13F y 13P.

En el acuífero Freático (13F), para el período que va de mayo de 2008 a febrero/marzo de 2014, los cloruros registraron en promedio 100 mg/l, y valores que se agrupan en el rango de oscilación de 50



y 150 mg/l. Desde febrero/marzo de 2014 a febrero/marzo de 2015 los Cl<sup>-</sup> observan una significativa tendencia al incremento desde valores de 149 mg/l a un máximo de 517 mg/l detectados en la última campaña.

En el acuífero Puelche, los cloruros, desde el inicio del monitoreo a la última campaña, presentan concentraciones que oscilan entre 45 y 15 mg/l y promedio de 20 mg/l. Se diferencia este acuífero del Freático, ya que las concentraciones de cloruros son significativamente menores, con escaso rango de variaciones desde el inicio del monitoreo (mayo de 2008) a la última campaña (febrero/marzo de 2015). Mientras que en el acuífero Freático se registran rangos de oscilaciones más acentuados en correspondencia con períodos de mayores precipitaciones. Los incrementos detectados en las últimas campañas se asocian a una recarga del Freático con aguas que presentan altos contenidos de cloruros.

# Profundidad del Agua (PA) y Sulfatos (SO<sub>4</sub>=)

En la Figura 2.3.10 se presentan las variaciones temporales de las PA y las concentraciones  $SO_4^=$  en pozos al acuífero Freático (13F) y Puelche (13P) ubicados en La Matanza, cuenca media.

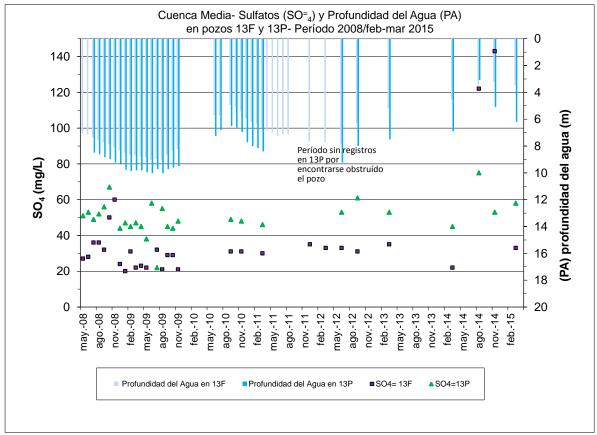



Figura 2.3.10. Cuenca Media. Profundidad del Agua (PA) y Sulfatos (SO<sub>4</sub>=) en pozos 13F y 13P.



Entre mayo 2008 y febrero/marzo de 2014 los sulfatos en el acuífero Freático (13F) oscilaron entre rangos de concentraciones de 20 a 40 mg/l. En dos campañas (febrero/marzo y octubre/noviembre 2014) observaron un significativo incremento a 122 y 143 mg/l respectivamente en tanto que en los monitoreos de febrero/marzo de 2015 se registraron valores de 33 mg/l. En el acuífero Puelche los contenidos de sulfatos promedian los 50 mg/l, la gran mayoría de los registros oscilan entre rangos de concentración de 40 a 60 mg/l, detectándose un máximo aislado en julio/agosto de 2014 con 75 mg/l coincidente con los incrementos observados en el Freático para este anión.

Los incrementos en las concentraciones por encima de los valores promedios se asocian a la recarga de los acuíferos con aguas que contienen elevadas concentraciones de sulfatos.

# • Profundidad del Agua (PA) y Nitratos (NO<sub>3</sub>-)

En la Figura 2.3.11 se presentan las variaciones temporales de las PA y las concentraciones de NO₃⁻ en los pozos al acuífero Freático (13F) y al acuífero Puelche (13P) de cuenca media, ubicados en el partido de La Matanza.

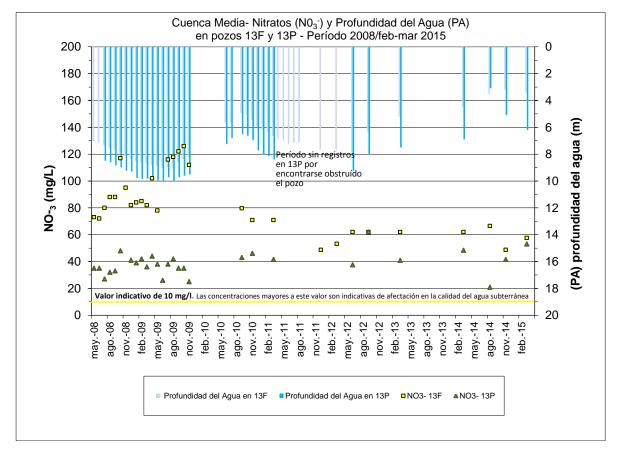



Figura 2.3.11. Cuenca Media. Profundidad del Agua (PA) y Nitratos (NO<sub>3</sub>-) en pozos 13F y 13P.



Los nitratos en el acuífero Freático (13F), en el período que va de mayo 2008 a febrero/marzo 2015 han registrado concentraciones mínimas de 49 mg/l, promedios del orden de los 82 mg/l y máximos que superan los 125 mg/l. En el acuífero Puelche, la mayor cantidad de valores se encuentran entre rangos de concentración de 20 a 50 mg/l, con promedio de 38 mg/l y máximo aislado de 62 mg/l. Las concentraciones de nitratos superiores a 10 mg/l son indicativos de afectación de la calidad del agua subterránea la cuales tienen ocurrencia en las zonas urbanizadas, que no han sido alcanzadas por los sistemas de saneamiento. En los sectores sin servicios cloacales, cada vivienda particular dispone sus efluentes domiciliarios en pozos absorbentes desde donde se produce la migración de los nitratos hacia el agua subterránea.

#### Nitrógeno Amoniacal (N-NH<sub>3</sub>)

En el acuífero Freático, pozo 13F, en el período que va de mayo 2008 a marzo/abril 2014, se han registrado concentraciones de nitrógeno amoniacal en valores cuantificables (mayores a 0,09 mg/l) en forma puntual, en las campañas de monitoreo de septiembre de 2010 con 0,17 mg/l; noviembre de 2010 que registra 0,15 mg/l y septiembre de 2012 en donde se detectaron 0,13 mg/l. Por su parte en el acuífero Puelche, pozo 13P, en el período mayo 2008-octubre/noviembre 2014, solo se ha registrado nitrógeno amoniacal en concentraciones mayores a 0,09 mg/l (límite de cuantificación) en la campaña de monitoreo de marzo de 2013, con 0,14 mg/l. En ambos acuíferos, salvo en los casos puntuales de las mencionadas campañas, los registros de N-NH<sub>3</sub> se encuentran por debajo los límites de cuantificación de la metodología empleada.

# Cuenca Media-Pozos 5F y 5P

Los pozos 5F y 5P se localizan en sector medio de la CMR en el límite con la cuenca baja, sobre la calle colectora de la Av. Gral. Paz, en la localidad de Lomas del Mirador, partido de La Matanza. En el entorno de los pozos, el uso del suelo es urbano-industrial con presencia de frigoríficos, industrias plásticas, alimenticias, de transformadores y bobinados, electrónicas y fábricas de enlozados. Como rasgo distintivo se destaca la traza de la avenida Gral. Paz y sus calles colectoras que separan la Ciudad Autónoma de Buenos Aires del partido de La Matanza. En la Figura 2.3.12, se muestra la localización de los pozos 5F -5P y su entorno. Actualmente el pozo 5P al Puelche, presenta rotura en la cañería de aislación por obras en la autopista. Dicho pozo se cegará y en su reemplazo se construirá un nuevo pozo.






Figura 2.3.12. Localización de los pozos 5F -5P y su entorno.

• Profundidad del Agua (PA) y Conductividad Eléctrica (CE)

En la Figura 2.3.13 se presentan las variaciones temporales de PA y registros de CE en pozos al acuífero Freático (5F) y al acuífero Puelche (5P).



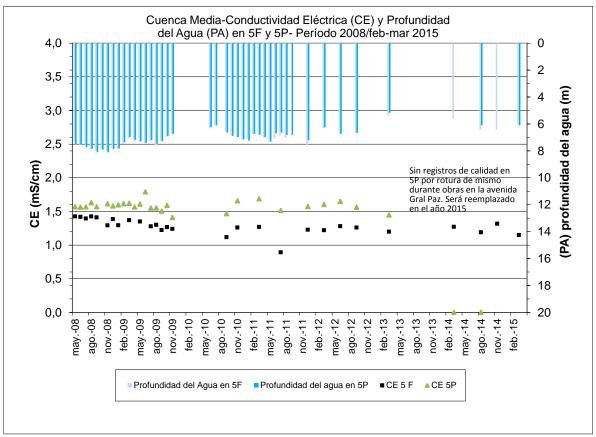



Figura 2.3.13. Cuenca media. Profundidad del Agua (PA) y Conductividad Eléctrica (CE) en pozos 5F y 5P.

En ambos acuíferos, se presentan similares registros de las PA, para el período monitoreado entre mayo 2008 y febrero/marzo de 2015. Dichas PA oscilan entre 8 y 5 metros y promedio de 7 metros.

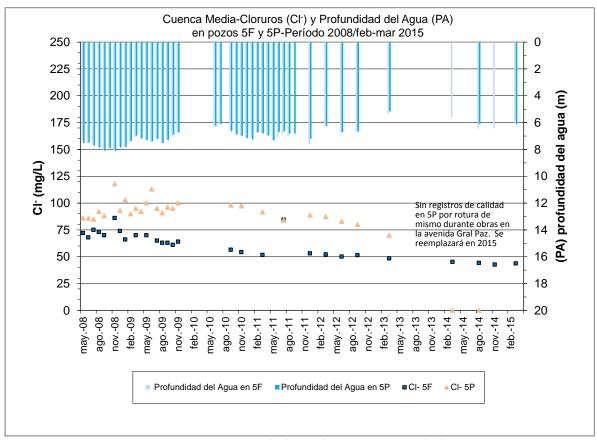
La CE en el acuífero Freático (pozo 5P), registra un promedio de 1,28 mS/cm= 1280  $\mu$ S/cm con escasas variaciones estacionales, observándose que la mayoría de los valores obtenidos oscilan entre 1,5 mS/cm= 1500  $\mu$ S/cm y 1,0 mS/cm= 1000  $\mu$ S/cm.

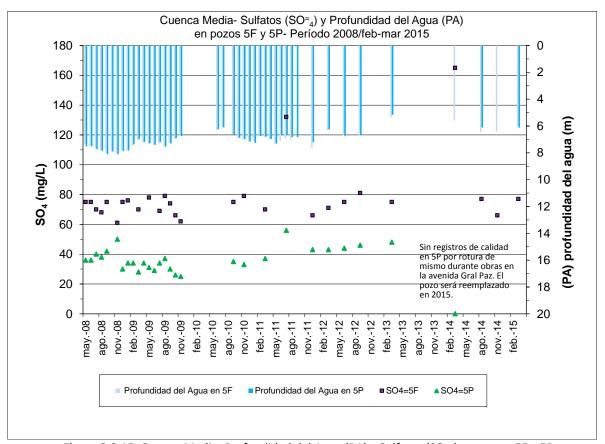
En el acuífero Puelche (pozo 5P), la CE presenta valores superiores a los registrados en el Freático, y exhiben leves oscilaciones entre mayo de 2008 y marzo de 2013. Los máximos no superan los 1,8 mS/cm= 1800  $\mu$ S/cm, los mínimos rondan los 1,40 mS/cm= 1400  $\mu$ S/cm con valores promedio de 1,57 mS/cm= 1570  $\mu$ S/cm.



# Profundidad del Agua (PA) y Cloruros (Cl<sup>-</sup>)

En la Figura 2.3.14 se presentan las variaciones temporales de las PA y las concentraciones de Cloruros (Cl<sup>-</sup>) en pozos al acuífero Freático (5F) y al acuífero Puelche (5P), ubicados en el partido de La Matanza en cuenca media.





Figura 2.3.14. Cuenca Media. Cloruros (Cl<sup>-</sup>) y Profundidad del Agua (PA) en pozos 5F y 5P.

En el acuífero Freático (5F), en el período mayo 2008- febrero/marzo 2015, los cloruros presentan una leve tendencia decreciente en sus concentraciones. Se registra un máximo aislado de 86 mg/l y un promedio de 62 mg/l, los mínimos hallados son coincidentes con las últimas campañas y están el orden de los 42-44 mg/l. En el acuífero Puelche, entre mayo de 2008 y marzo de 2013, las concentraciones de cloruros oscilan entre 70 y 118 mg/l, arrojando un promedio de 92,5 mg/l.



# Profundidad del Agua (PA) y Sulfatos (SO<sub>4</sub>=)

En la Figura 2.3.15 se presentan las variaciones temporales de las PA y las concentraciones de  $SO_4^=$  en pozos al acuífero Freático (5F) y Puelche (5P) ubicados en el partido de La Matanza, cuenca media.



**Figura 2.3.15**. Cuenca Media. Profundidad del Agua (PA) y Sulfatos (SO<sub>4</sub>=) en pozos 5F y 5P.

En el acuífero Freático (5F), en el período de monitoreo que va de mayo de 2008 a febrero/marzo de 2015 las concentraciones de sulfatos, salvo casos aislados, presentan valores que oscilan entre 61 y 79 mg/l. Mientras que en el acuífero Puelche (5P), en el período mayo de 2008 y marzo de 2013, los contenidos de sulfatos registraron máximos y mínimos de 56 y 25 mg/l respectivamente y promedios de 37 mg/l.



# Profundidad del Agua (PA) y Nitratos (NO<sub>3</sub>-)

En la Figura 2.3.16 se presentan las variaciones temporales de las PA y las concentraciones de NO<sub>3</sub><sup>-</sup> en pozos al acuífero Freático (5F) y al acuífero Puelche (5P), ubicados en el partido de La Matanza de la cuenca media.

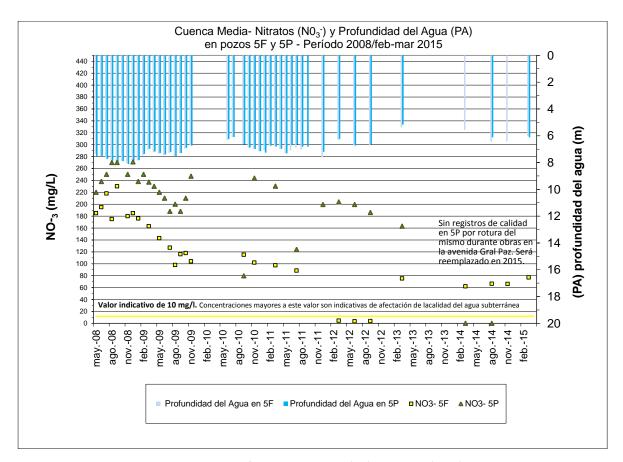



Figura 2.3.16. Cuenca Media. Profundidad del Agua (PA) y Nitratos (NO<sub>3</sub>-) en pozos 5F y 5P.

Los nitratos en el acuífero Freático (5F), en el período que va de mayo 2008 a febrero/marzo 2015, a excepción de algunas campañas aisladas en donde se registraron mínimos de 3,4 mg/l, presentan concentraciones promedio del orden de los 120 mg/l, con máximos que superan los 200 mg/l. Mientras que en el pozo 5P del acuífero Puelche, entre los monitoreos de mayo de 2008 y febrero/marzo de 2015, se detectaron concentraciones mínimas de 80 mg/l, con promedios de 215 mg/l y máximos que llegan a superar los 270 mg/l. Se observa que en esta zona de la cuenca media, los pozos presentan concentraciones de nitratos promedio superiores a los 120 mg/l en el Freático y 215 mg/l en el Puelche. Como ya se expresara, las concentraciones de nitratos superiores a 10 mg/l son indicativas de afectación de la calidad del agua subterránea.



## Nitrógeno Amoniacal (N-NH<sub>3</sub>)

En el acuífero Freático, pozo 5F, en el período mayo de 2008 y agosto de 2014, solo se han detectado concentraciones de nitrógeno amoniacal en dos campañas y en las mismas los valores se encuentran próximos al límite de detección de la metodología empleada cuyo valor es 0,03 mg/l. Dichas campañas son: marzo de 2009 con 0,03 mg/l y abril del mismo año con 0,04 mg/l. En el acuífero Puelche, pozo 5P, entre mayo de 2008 y marzo de 2013, se han registrado concentraciones de nitrógeno amoniacal en forma puntual en tres campañas de monitoreo: septiembre de 2009 en donde se detectaron 0,29 mg/l; en julio de 2011 se registraron 3,7 mg/l; y en octubre de 2012 en donde se hallaron 0,12 mg/l. En ambos acuíferos, salvo en los casos antes mencionados, los registros de N-NH<sub>3</sub> se encuentran por debajo los límites de cuantificación de la metodología empleada.

## Cuenca Baja-Pozos 6F y 6P

Los pozos 6F y 6P, se localizan en la cuenca baja del Riachuelo, a aproximadamente 3 km de la desembocadura de este curso de agua, cercano al puente de la Autopista Buenos Aires-La Plata, en Dock Sud, partido de Avellaneda.

En la Figura 2.3.17, se muestra la ubicación de los pozos 6F -6P conjuntamente con su entorno.



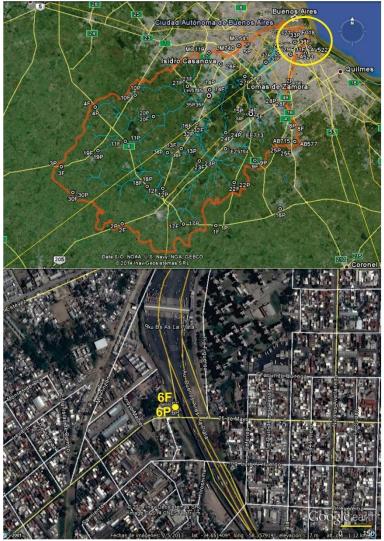



Figura 2.3.17. Localización de los pozos 6F -6P y su entorno.

En la zona monitoreada por los pozos 6F y 6P, los usos del suelo son urbano e industrial principalmente. Se distinguen edificios, casas de una y varias plantas, coexistiendo con un sector industrial de gran desarrollo, entre las que se destaca, por su magnitud, el polo petroquímico de Dock Sud observándose también áreas con galpones para logística, numerosas industrias y la zona del puerto.

Profundidad del Agua (PA) y Conductividad Eléctrica (CE)

En la Figura 2.3.18 se presentan las variaciones temporales de las PA y los registros de CE en pozos al acuífero Freático (6F) y al acuífero Puelche (6P).



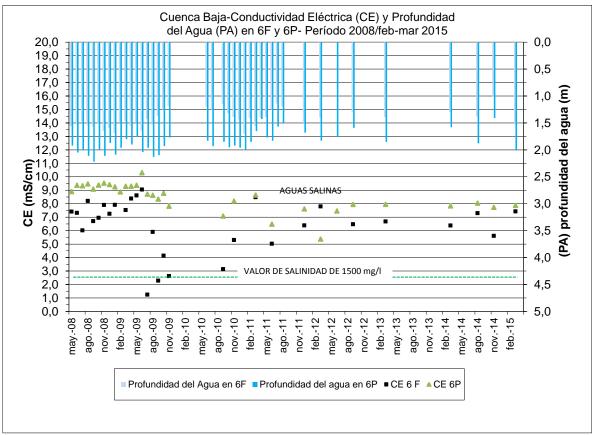



Figura 2.3.18. Cuenca Baja. Profundidad del Agua (PA) y Conductividad Eléctrica (CE) en pozos 6F y 6P.

En esta zona de la cuenca baja, el agua del acuífero Freático se localiza muy próxima a la superficie, oscilando en un estrecho rango de variación. En el período que va de mayo 2008 a febrero/marzo 2015, las máximas profundidades del agua freática registraron 1,70 metros, las mínimas 1,01 metros con promedios del orden de 1,42 metros. En este sector de la cuenca, las oscilaciones de las PA en el freático se relacionan con las variaciones de niveles de agua de los cursos próximos al sitio de monitoreo. En el Puelche la mínima profundidad del agua es de 1,40 metros, mientras que en promedio se la encuentra a 1,87 metros y en algunas campañas puntuales se la ha detectado a más de 2,0 metros de profundidad.

En este sector de la cuenca baja, la escasa pendiente y las características de los sedimentos asociados al acuífero Freático, condicionan el movimiento del agua. De esta manera se incrementa el tiempo de contacto entre el agua y los sedimentos los cuales contienen altas concentraciones de sales, dando como resultado aguas con elevadas CE.



En el acuífero Freático (pozo 6F), los monitoreos realizados entre mayo de 2008 y febrero/marzo de 2015, arrojan como resultado una CE promedio de 6,38 mS/cm= 6380  $\mu$ S/cm. Se registran algunas variaciones estacionales, cuyos máximos se encuentran en el orden de los 9,05 mS/cm= 9050  $\mu$ S/cm y un mínimo aislado que apenas supera los 1,240 mS/cm=1240  $\mu$ S/cm.

En el acuífero Puelche, pozo 6P, entre mayo de 2008 y febrero/marzo de 2015, la CE presenta promedios del orden de los 8,5 mS/cm= 8500  $\mu$ S/cm, oscilando entre rangos de variación de 10,0 mS/cm= 10000  $\mu$ S/cm y 5,4 mS/cm= 5400  $\mu$ S/cm. Las máximas CE tienen su ocurrencia en las campañas donde se han registrado las mayores profundidades del agua en los pozos.

# Profundidad del Agua (PA) y Cloruros (Cl<sup>-</sup>)

En la Figura 2.3.19 se presentan las variaciones temporales de las PA y las concentraciones de Cloruros (Cl<sup>-</sup>) en pozos al acuífero Freático (6F) y Puelche (6P) ubicados en Dock Sud, partido de Avellaneda.



Figura 2.3.19. Cuenca Baja. Profundidad del Agua (PA) y Cloruros (Cl<sup>-</sup>) en pozos 6F y 6P.



En el período monitoreado que va de mayo de 2008 a febrero/marzo de 2015, el acuífero Freático (6F) registra concentraciones de Cl<sup>-</sup> promedio de 1672 mg/l, con un amplio rango de oscilación, que varía entre mínimos del orden de los 500 mg/l y máximos que superan los 2500 mg/l. En el acuífero Puelche, para el mismo intervalo de monitoreo (mayo de 2008- febrero/marzo de 2015), los contenidos promedio de cloruros registran 2038 mg/l, agrupándose la mayoría de los valores entre rangos de variación que van de 1200 a 2500 mg/l. En la cuenca baja, los aniones cloruros, tanto en el acuífero Freático como en acuífero Puelche, presentan concentraciones más elevadas, si se las compara frente a las registradas en cuenca media y alta.

# Profundidad del Agua (PA) y Sulfatos (SO<sub>4</sub>=)

En la Figura 2.3.20 se presentan las variaciones temporales de las PA y las concentraciones de  $SO_4^=$  en pozos al Freático (6F) y Puelche (6P) ubicados en la localidad de Dock Sud en la cuenca baja.

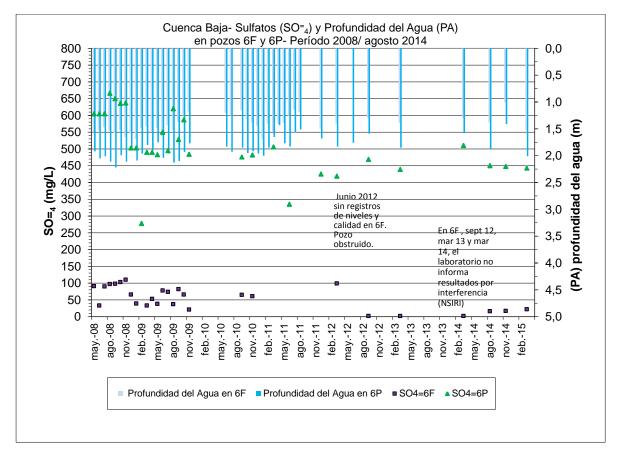



Figura 2.3.20. Cuenca Baja. Profundidad del Agua (PA) y concentraciones de Sulfatos (SO<sub>4</sub>=) en pozos 6F y 6P.



Los sulfatos presentan amplias diferencias si se comparan los valores de concentraciones de los acuíferos Freático y Puelche, registrándose en éste último contenidos significativamente superiores respecto del Freático. Además se observa, principalmente en el Puelche, una tendencia al aumento en las concentraciones de sulfatos en los períodos de profundización del agua en los pozos.

En el acuífero Freático (6F), para el período que va de mayo de 2008 a febrero/marzo de 2015 los sulfatos registraron concentraciones máximas que rondan los 110 mg/l, mínimos de 16 mg/l y 55 mg/l de promedio. En el acuífero Puelche (6P), para el mismo período (2008/2015), los contenidos de sulfatos registraron máximos de 666 mg/l, un mínimo aislado de 278 mg/l y 510 mg/l de promedio. Se observa que salvo en campañas puntuales, la mayor parte de los registros de concentración se ubican en el rango de los 400 y 550 mg/l.

# Profundidad del Agua (PA) y Nitratos (NO<sub>3</sub>-)

En la Figura 2.3.21 se presentan las variaciones temporales de las PA y las concentraciones de  $NO_3^-$  en pozos a los acuíferos Freático (6F) y Puelche (6P) ubicados en Dock Sud, cuenca baja.

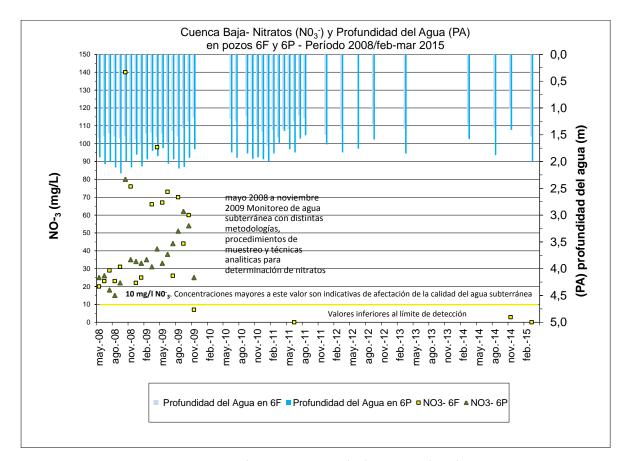



Figura 2.3.21. Cuenca baja. Profundidad del Agua (PA) y Nitratos (NO<sub>3</sub>-) en pozos 6F y 6P.



Los nitratos, en ambos acuíferos, presentan significativas diferencias en las concentraciones a partir de septiembre de 2010. Estas diferencias responden a modificaciones en los procedimientos de muestreo y técnicas analíticas para determinación de nitratos. En tal sentido, a partir de esa fecha, ACUMAR conjuntamente con el INA implementaron y desarrollaron procedimientos de muestreos conforme a los establecidos por las normas y recomendaciones para los programas de monitoreos de agua subterránea. De acuerdo a los registros obtenidos entre mayo de 2008 y octubre de 2009, en el acuífero Freático (6F), las concentraciones promedio de nitratos rondan los 52 mg/l, mientras que en el Puelche (6P) los promedios arrojan un valor de 37 mg/l. A partir de octubre de 2009 y hasta febrero/marzo de 2015, en ambos acuíferos, las concentraciones de nitratos se mantienen por debajo de los límites de detección de las metodologías empleadas para su determinación (0,29 mg/l). En forma aislada, en el pozo 6F, se han detectado 2,84 mg/l de nitratos durante la campaña de octubre/noviembre de 2014.

En este sector de la CMR las escasas detecciones de NO<sub>3</sub><sup>-</sup> están asociadas a procesos de reducción que condicionan la presencia de compuestos nitrogenados oxidados (nitratos) propiciando la estabilidad de las especies reducidas (amonio/nitrógeno amoniacal).

Profundidad del Agua (PA) y Nitrógeno Amoniacal (N-NH<sub>3</sub>)

En la Figura 2.3.22 se presentan las variaciones temporales de las PA y las concentraciones de N-NH<sub>3</sub> en pozos al acuífero Freático (6F) y al acuífero Puelche (6P) ubicados en Dock Sud, cuenca baja.



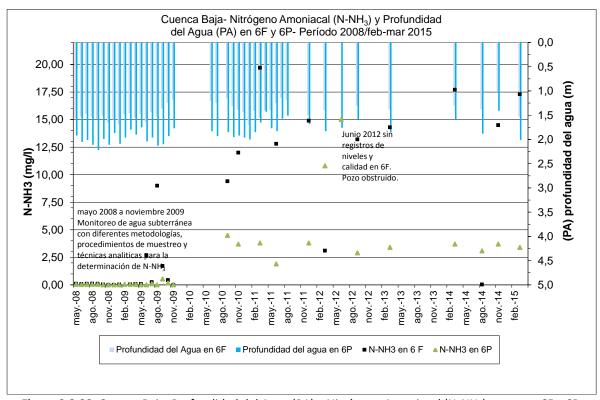



Figura 2.3.22. Cuenca Baja. Profundidad del Agua (PA) y Nitrógeno Amoniacal (N-NH<sub>3</sub>) en pozos 6F y 6P.

En el acuífero Freático, pozo 6F, en el período mayo 2008 a noviembre 2009, se han detectado concentraciones de nitrógeno amoniacal que arrojan en promedio 0,98 mg/l, oscilando entre valores de 9,0 y 0,03 mg/l para máximos y mínimos respectivamente. Desde septiembre de 2010 a febrero/marzo de 2015, las concentraciones registran máximos cercanos a los 20 mg/l, un mínimo aislado 0,03 mg/l y promedio de 6 mg/l. En el acuífero Puelche, pozo 6P, en el período mayo 2008/noviembre 2009 se registraron concentraciones de nitrógeno amoniacal que en promedio rondan los 0,1 mg/l, con máximos de 0,54 mg/l y dentro del rango detectable los mínimos registrados fueron de 0,04 mg/l. Mientras que entre septiembre de 2010 y febrero/marzo de 2015, las concentraciones arrojaron promedios del orden de los 5,0 mg/l, con un máximo aislado de 15 mg/l y mínimo de 1,9 mg/l. Se observa que además, la mayor parte de las detecciones de N-NH<sub>3</sub> se ubican en un rango de oscilación que va de 2 a 5 mg/l. En este sector de la cuenca predominan los procesos de reducción los cuales propician la estabilidad de las especies amonio/nitrógeno amoniacal frente a los nitratos.

Las diferencias observadas entre los períodos 2008-2009 y 2010-2014 responden a las metodologías empleadas para el muestreo de agua subterránea y las técnicas analíticas aplicadas para las determinaciones de este compuesto nitrogenado.



En general, en el acuífero Freático, se registran mayores concentraciones de nitrógeno amoniacal y rangos de oscilaciones más amplios, su presencia se encuentra asociada a la interacción del agua freática con los cursos de agua superficiales que contienen N-NH<sub>3</sub>. En el acuífero Puelche, salvo en algunas campañas puntuales, las oscilaciones se presentan algo más atenuadas.

El nitrógeno amoniacal se analiza desde el inicio del monitoreo y se lo utiliza como parámetro indicador de la calidad del agua subterránea. Su presencia natural en los cuerpos de agua está dada por el ciclo biológico del nitrógeno. Las actividades antrópicas han incrementado significativamente la presencia del nitrógeno amoniacal, tal como sucede en este tramo de la cuenca baja, consecuencia de los aportes nitrogenados al sistema agua superficial/agua subterránea, provenientes tanto de fuentes puntuales como difusas. Entre las puntuales, pueden destacarse los desagües cloacales y los efluentes de plantas de producción de fertilizantes, disposición inadecuada de residuos con alto contenido orgánico, los residuos provenientes de los frigoríficos y actividades de las refinerías de petróleo. Mientas que los aportes nitrogenados de fuentes difusas se manifiestan en la cuenca alta y son generados por lavado de suelos fertilizados con sales que contienen compuestos amoniacales.

#### 2.4. Aspectos conclusivos de los monitoreos históricos entre 2008-2015.

En la cuenca Matanza-Riachuelo, las aguas subterráneas se utilizan para satisfacer las necesidades en las viviendas familiares y para abastecer los requerimientos de la industria, el riego y las actividades agrícolas-ganaderas. El acuífero Puelche ha sido utilizado cuando se requiere explotar grandes caudales de agua, para cubrir las demandas de las empresas prestadoras de servicios de agua de red, para los procesos industriales y para el riego de gran escala. Los acuíferos Freático y/o Pampeano son utilizados cuando se requiere explotar caudales menores, tales como el auto-abastecimiento domiciliario en viviendas familiares, bebida del ganado y actividades agrícolas-ganaderas.

Los resultados de monitoreos históricos, desde el 2008 a la fecha, han aportado al conocimiento de la calidad química de las aguas subterráneas de la cuenca. En relación a ello, se han reconocido distintos sectores en la CMR. Los registros de conductividad y los valores de concentraciones de cloruros, sulfatos, nitratos y nitrógeno amoniacal se han utilizado como indicadores de la calidad del agua, mientras que los registros de profundidades del agua permiten reconocer su evolución temporal, identificar las zonas de recarga o descarga y, además, realizar cálculos, mapas y análisis para determinar el sentido de flujo del agua subterránea.



De acuerdo a las actividades antrópicas, profundidad y calidad de las aguas subterráneas se pueden distinguir los siguientes sectores de la CMR:

<u>Cuenca alta</u>: predominan las actividades agrícolas y ganaderas, naturalmente el agua se presenta de buena calidad, a escasa profundidad y los niveles en los pozos responden en forma directa con las precipitaciones. Se reconoce a la cuenca alta como una zona de buena calidad de las aguas subterráneas ya que predomina la recarga de los acuíferos. Dichos acuíferos presentan buena aptitud para las explotaciones ya que aseguran calidad y cantidad de agua suficiente para los principales usos (doméstico, riego e industrial). Existe un evento aislado en el pozo 1F, en las últimas campañas que produce una modificación en la calidad química del agua freática debido a la aplicación de materiales orgánicos en un sector del suelo próximo al sitio de monitoreo.

<u>Cuenca media</u>: predominan las actividades antrópicas, las cuales se manifiestan en las profundizaciones de los niveles de agua en los acuíferos producto de las extracciones, y se manifiesta un empobrecimiento de la calidad química del agua. Naturalmente, en este sector de la cuenca, ambos acuíferos ofrecen aguas de buena calidad química, aunque las actividades humanas han afectado dicha calidad debido la inadecuada disposición de los efluentes (industriales y domésticos). Relacionado a este tipo de afectación, se destaca la zona de los pozos 5F-5P ubicados en un área de gran desarrollo urbano y fuerte actividad industrial, donde las concentraciones de nitratos llegan a superar los 100 mg/l en el Freático y los 200 mg/l en el Puelche.

Cuenca baja: está caracterizada por ser una zona de gran actividad industrial, con la presencia del polo petroquímico, grandes áreas destinadas a depósitos y actividades portuarias. En este sector de la cuenca, el agua subterránea se sitúa cercana a la superficie, la escasa pendiente del terreno determina un movimiento del agua muy lento, constituye la zona de descarga principal del sistema subterráneo y éste interactúa con los cursos de agua. Estas características de la cuenca baja determinan una mala calidad del agua subterránea producto de los altos contenidos salinos, elevadas concentraciones de cloruros, sulfatos (principalmente en el Puelche) aportados naturalmente y la presencia de nitrógeno amoniacal proveniente de las actividades humanas. Si bien en la cuenca baja el agua subterránea se presenta a escasa profundidad y es posible explotarla en grandes volúmenes, la calidad de la misma determina una pobre aptitud para los principales usos (doméstico, industrial y riego).



# 2.5. Continuidad de los monitoreos. Programas de ampliación de la red.

Desde mayo de 2008 a la actualidad, ACUMAR realiza el monitoreo del agua subterránea de la cuenca Matanza-Riachuelo, el cual permite documentar la evolución de la dinámica y calidad de los acuíferos Freático y Puelche. La red de pozos de monitoreo va optimizándose cada año a través de la instalación de nuevos sitios de monitoreo (pozos a ambos acuíferos) con el fin de incorporar nuevas áreas y aumentar la representatividad del monitoreo.

Con la ejecución de los distintos programas de ampliación de la red de monitoreo, a la fecha, se tiene una distribución de un pozo cada 50 km² para ambos acuíferos, por lo que la red proporciona información a escala de semidetalle.

Se encuentra en proceso de nuevo llamado a licitación el programa de ampliación y mantenimiento de la red de monitoreo. Dicho programa, gestionado bajo el expediente ACR: 305/2015 permitirá incorporar nuevos pozos de monitoreo en áreas críticas donde existen vacíos de información respecto del agua subterránea. A la vez, con la ejecución de dicho programa, se contempla el mantenimiento de los pozos dañados, reemplazo de aquellos que se encuentran fuera de servicio y colocación de indicadores que permitan visualizar los sitios de monitoreo.

En la **figura 2.4.1** se pueden ver los sitios donde se instalarán nuevos pozos de monitoreo durante el año 2015.



| Direcciones                                                                                                      | Coordenadas               | Localidad            | Partido        | Acuífero | Pozo  | Cantidad pozos |
|------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------|----------------|----------|-------|----------------|
| Plazoleta triangular conformada por las calles Sargento Ponce,                                                   | S34°38'49"                | Dock Sud             | Avellaneda     | Freático | 47F   | 1              |
| Madrid y Nuñez                                                                                                   | W58°20'41"                |                      |                | Puelche  | 47P   | 1              |
| Colectora Ruta 3,<br>Brigadier Juan Manuel<br>de Rosas N°7979,<br>entre Andalgalá y<br>Settino.                  | S34°42'44"<br>W58°35'29"  | Isidro<br>Casanova.  | La Matanza     | Puelche  | 26P   | 1              |
| Colectora Ruta 3,<br>Brigadier Juan Manuel<br>de Rosas y Calle<br>Aroma, cerca de Barrio<br>Privado Santa Amelia | \$34°50'39"<br>W58°39'14" | Virrey del<br>Pino   | La Matanza     | Puelche  | 16P   | 1              |
| Pagola y General Paz colectora provincia.                                                                        | S34°39'57"<br>W58°30'51"  | Lomas del<br>Mirador | La Matanza     | Puelche  | 5P    | 1              |
| Morse y colectora<br>Autopista Buenos<br>Aires-La Plata                                                          | \$34°40'8"   Dock Sur     | Dock Sud             | Avellaneda     | Freático | 31F   | 1              |
|                                                                                                                  | W58°20'21"                | 58°20'21"            |                | Puelche  | 31P   | 1              |
| Libertad y Colombres                                                                                             | S35° 02'24"<br>W58°25'11" | San<br>Vicente       | San<br>Vicente | Freático | SV16F | 1              |
| Cantidad total de pozos a instalar                                                                               |                           |                      |                |          |       | 8              |

<u>Fuente</u>: elaboración propia a partir de especificaciones técnicas del expediente ACR: 305/2015

Nota: Los sitios donde se desarrollarán las tareas serán en la vereda o espacio público.

En el sitio 47, (en amarillo) se instalarán dos pozos uno al Freático y otro Puelche.

En los sitios 16 y 26, (en verde) actualmente se encuentra instalado un pozo para monitorear el acuífero Freático

En el sitio 5, (en azul) se instalará un pozo de monitoreo al acuífero Puelche y se cegara otro, al mismo acuífero, que se encuentra dañado.

En el sitio SV16 (en gris) se encuentra instalado un pozo para monitoreo del acuífero Puelche

Figura 2.4.1. Ubicación de los pozos a instalar en la ampliación de la red del año 2015.

Por otra parte, se ha celebrado la contratación del Instituto Nacional del Agua con el fin de dar continuidad a los monitoreos para el período 2015/2016. Dicha contratación se gestiona bajo las actuaciones del expediente ACR: 244/2015, que contempla la ejecución de cuatro campañas trimestrales/estacionales de niveles y calidad del agua subterránea.

## 2.6. Finalidad de los monitoreos de agua subterránea.

Los resultados obtenidos de los monitoreos históricos entre 2008 y 2015 han permitido determinar la evolución de la calidad del agua subterránea respecto las intervenciones de ACUMAR en áreas



específicas de la cuenca. A la vez que, los registros obtenidos contribuyen a identificar zonas con distinta calidad del agua subterránea impuestas por las condiciones naturales de los acuíferos y/o producto de las actividades antrópicas.

En resumen, con la ejecución de los monitoreos se han obtenido resultados que permitieron evaluar y documentar el comportamiento (dinámico y químico) de los acuíferos, las tendencias en la evolución de la calidad de sus aguas en respuesta a los impactos producidos por las actividades antrópicas y las condiciones impuestas por el medio natural. A la vez, los registros de los monitoreos son utilizados como un insumo básico para otros estudios específicos y detallados llevados a cabo por ACUMAR en el marco de la aplicación del PISA. Los resultados de los análisis químicos se utilizan para la elaboración del indicador P13. Evolución de las concentraciones de nitratos en la CMR.

## 3. BIODIVERSIDAD

#### 3.1. MONITOREO DE LA ICTIOFAUNA EN CURSOS DE AGUA SUPERFICIAL DE LA CHMR

En el marco del Convenio Específico Complementario N° 4 entre la Universidad Nacional de La Plata, a través del Instituto de Limnología "Dr. Raúl A. Ringuelet" (ILPLA) y la ACUMAR se realizó en la primavera de 2015 la segunda campaña del Proyecto "Monitoreo de la Ictiofauna en Cursos de Agua Superficial de la Cuenca Hidrográfica Matanza Riachuelo". La misma se desarrolló entre los días 21 de septiembre y 16 de octubre de 2015. El informe de la misma será presentado para mediados del mes de noviembre de 2015.





# 3.2. DIFUSIÓN DE AREAS DE PROTECCIÓN AMBIENTAL (APAS) Y DE LA BIODIVERSIDAD DE LA CMR

Durante los meses de septiembre y octubre de 2015 se trabajó en 2 materiales de difusión y educación ambiental vinculados a las líneas de acción del componente biodiversidad, 1. Identificar y apoyar la delimitación de áreas en la Cuenca, que podrían estar sujetas a un especial manejo por ser hábitat de flora y fauna, incluyendo Humedales y otras áreas naturales presentes en la Cuenca Matanza Riachuelo debido a los servicios ambientales que prestan a la sociedad y 5. Trabajar junto a otras coordinaciones de la ACUMAR para avanzar hacia una puesta en valor de la biodiversidad en la sociedad vinculada a la cuenca.

El día viernes 16 de octubre se presentó <u>el folleto de "Áreas de Protección Ambiental de La Cuenca Matanza Riachuelo"</u> en el que se identifican 15 áreas prioritarias de conservación de biodiversidad en el marco de la CMR. Las APAs son: Reserva Municipal La Saladita, Reserva Natural Costera (Avellaneda), Reserva Municipal Santa Catalina (Lomas de Zamora), Reserva Provincial Santa Catalina (Lomas de Zamora), Proyecto Bañados de Lomas de Zamora (Lomas de Zamora), Laguna de Rocha (Esteban Echeverría), Bosques de Ezeiza (Ezeiza), Reserva Ciudad Evita (La Matanza), Reserva Natural de Morón (Morón), Reserva Arroyo El Durazno (Marcos Paz), Reserva Guardia del Juncal (Cañuelas), Reserva Lagunas de San Vicente (San Vicente), Reserva Paleontológica "Francisco P. Moreno" (Marcos Paz), la Reserva Ecológica Costanera Sur y Proyecto Reserva Lago Lugano (Ciudad Autónoma de Buenos Aires).







Además se presentó una <u>Guía de las Aves más comunes de la CMR</u>, grupo de vertebrados indicador de calidad ambiental, contando con una descripción de 24 especies de aves silvestres habitualmente observadas en la cuenca.



# 3.3. MONITOREO DE LA CALIDAD DEL AGUA DE HUMEDALES PRIORITARIOS DE LA CUENCA MATANZA RIACHUELO

En el marco del monitoreo estacional realizado en los Humedales Laguna de Rocha, Esteban Echeverría y Laguna "Saladita", Avellaneda, se realizó el monitoreo en agua superficial y sedimentos de las Lagunas de Rocha, Esteban Echeverría y Saladita, Avellaneda durante la estación de invierno



de 2015. El informe correspondiente se encuentra en desarrollo ya que se está finalizando el análisis de los parámetros físico-químicos y biológicos relevados.

#### **GLOSARIO**

**Acuífero:** Estrato o formación geológica permeable que permite la circulación y el almacenamiento del agua subterránea por sus poros o grietas. El nivel superior del agua subterránea se denomina tabla de agua, y en el caso de un acuífero libre, corresponde al nivel freático.

**Aforo:** Perforación – Medio para medir la cantidad de agua que lleva una corriente en una unidad de tiempo.

Anaerobiosis: Procesos metabólicos que tienen lugar en ausencia de oxígeno.

**Anión:** Ion con carga eléctrica negativa, es decir, que ha ganado electrones. Los aniones se describen con un estado de oxidación negativo.

**Biodiversidad:** Variación de formas de vida dentro de un dado ecosistema, bioma o para todo el planeta. La biodiversidad es utilizada a menudo como una medida de la salud de los sistemas biológicos.

**Bioindicador:** Especies o compuestos químicos utilizados para monitorear la salud del ambiente o ecosistema.

**Biodisponibilidad:** Proporción de una sustancia, nutriente, contaminante u otro compuesto químico, que se utiliza en el caso de los nutrientes metabólicamente en el hombre para la realización de las funciones corporales normales o bien que se encuentra disponible en el ecosistema para ser utilizado en distintas reacciones o ciclos.

**Canal:** Vía artificial de agua construida por el hombre que normalmente conecta lagos, ríos u océanos.

Capa freática: Nivel por el que discurre el agua en el subsuelo. En su ciclo, una parte del agua se filtra y alimenta al manto freático, también llamado acuífero. El acuífero puede ser confinado cuando los materiales que conforman el suelo son impermeables, generando tanto un piso y un techo que mantiene al líquido en los mismos niveles subterráneos. No obstante, el acuífero también puede ser libre cuando los materiales que lo envuelven son permeables, con lo que el agua no tiene ni piso ni techo y puede aflorar sobre la superficie.

**Catión:** Un catión es un ion (sea átomo o molécula) con carga eléctrica positiva, es decir, ha perdido electrones. Los cationes se describen con un estado de oxidación positivo.

**Cauce:** Parte del fondo de un valle por donde discurren las aguas en su curso: es el confín físico normal de un flujo de agua, siendo sus confines laterales las riberas.



**Caudal:** Cantidad de fluido que pasa en una unidad de tiempo. Normalmente se identifica con el flujo volumétrico o volumen que pasa por un área dada en la unidad de tiempo.

**Clorofila:** La clorofila es el pigmento receptor sensible a la luz responsable de la primera etapa en la transformación de la energía de la luz solar en energía química, y consecuentemente la molécula responsable de la existencia de vida superior en la Tierra. Se encuentra en orgánulos específicos, los cloroplastos, asociada a lípidos y lipoproteínas.

**Contaminante:** Sustancia química, o energía, como sonido, calor, o luz. Puede ser una sustancia extraña, energía, o sustancia natural, cuando es natural se llama contaminante cuando excede los niveles naturales normales. Es siempre una alteración negativa del estado natural del medio, y por lo general, se genera como consecuencia de la actividad humana.

**Crustáceo:** Gran grupo de especies que incluye varias familias de animales como los cangrejos, langostas, camarones y otros mariscos. La mayoría de ellos son organismos acuáticos.

Descarga: Producto o desecho líquido industrial liberado a un cuerpo de agua.

**Diatomeas:** Un grupo mayoritario de algas y uno de los tipos más comunes presentes en el fitoplancton.

**Drenaje:** En ingeniería y urbanismo, es el sistema de tuberías, sumideros o trampas, con sus conexiones, que permite el desalojo de líquidos, generalmente pluviales, de una población.

**Ecología:** Ciencia que estudia a los seres vivos, su ambiente, la distribución y abundancia, cómo esas propiedades son afectadas por la interacción entre los organismos y su ambiente.

**Efluente:** Salida o flujos salientes de cualquier sistema que despacha flujos de agua hacia la red pública o cuerpo receptor.

**Erosión:** Incorporación y el transporte de material por un agente dinámico, como el agua, el viento o el hielo. Puede afectar a la roca o al suelo, e implica movimiento, es decir transporte de granos y no a la disgregación de las rocas.

**Especie sensible:** Especie animal o vegetal que se adapta a condiciones ambientales de distintos parámetros en un rango limitado o pequeño dentro de la distribución de los mismos.

**Especie tolerante:** Especie animal o vegetal que se adapta a condiciones ambientales de distintos parámetros en un amplio rango dentro de la distribución de los mismos.

**Estación Hidrométrica:** Instalación hidráulica consistente en un conjunto de mecanismos y aparatos que registran y miden las características de una corriente.

**Estiaje:** Nivel de caudal mínimo que alcanza un río o laguna en algunas épocas del año, debido principalmente a la sequía. El término se deriva de estío o verano.



**Eutrofización:** Producción elevada de biomasa en aguas principalmente debido a una sobrecarga de nutrientes (típicamente nitrógeno y fósforo).

Fauna: Una colección típica de animales encontrada en un tiempo y sitio específico.

Fitoplancton: Organismos, principalmente microscópicos, existentes en cuerpos de agua.

Flora: Una colección típica de plantas encontrada en un tiempo y sitio específico.

**Hábitat:** El medioambiente físico y biológico en el cual una dada especie depende para su supervivencia.

Hidrocarburo: Compuesto orgánicos formado básicamente por átomos de carbono e hidrógeno. La estructura molecular consiste en un armazón de átomos de carbono a los que se unen los átomos de hidrógeno. Los hidrocarburos son los compuestos básicos de la Química Orgánica. Las cadenas de átomos de carbono pueden ser lineales o ramificadas y abiertas o cerradas. Los hidrocarburos extraídos directamente de formaciones geológicas en estado líquido se conocen comúnmente con el nombre de petróleo, mientras que los que se encuentran en estado gaseoso se les conoce como gas natural. La explotación comercial de los hidrocarburos constituye una actividad económica de primera importancia, pues forman parte de los principales combustibles fósiles (petróleo y gas natural), así como de todo tipo de plásticos, ceras y lubricantes.

**Intermareal:** Parte de la costa de un cuerpo de agua superficial situada entre los niveles conocidos de las máximas y mínimas mareas. La zona intermareal está cubierta, al menos en parte, durante las mareas altas y al descubierto durante las mareas bajas.

**Macroinvertebrados:** Insectos acuáticos, gusanos, almejas, caracoles y otros animales sin espina dorsal que pueden ser determinados sin la ayuda de un microscopio y que viven el sedimento o sobre este.

**Macrófitas:** Plantas acuáticas, flotantes o fijadas al fondo, que pueden ser determinadas a ojo desnudo sin la ayuda de un microscopio.

**Materia orgánica:** Complejo formado por restos vegetales y/o animales que se encuentran en descomposición en el suelo y que por la acción de microorganismos se transforman en material de abono.

**Meteorología:** Ciencia interdisciplinaria, fundamentalmente una rama de la Física de la atmósfera, que estudia el estado del tiempo, el medio atmosférico, los fenómenos allí producidos y las leyes que lo rigen.

**Muestreo:** Técnica en estadística para la selección de una muestra a partir de una población. Al elegir una muestra se espera conseguir que sus propiedades sean extrapolables a la población. Este



proceso permite ahorrar recursos, y a la vez obtener resultados parecidos a los que se alcanzarían si se realizase un estudio de toda la población.

**Nutriente:** Sustancias como el nitrógeno (N) y el fósforo (P), utilizada por los organismos para su crecimiento.

Parámetro: Un componente que define ciertas características de sistemas o funciones.

**Plaguicidas:** son sustancias químicas o mezclas de sustancias, destinadas a matar, repeler, atraer, regular o interrumpir el crecimiento de seres vivos considerados plagas. Suelen ser llamados comúnmente agroquímicos o pesticidas. En base a su composición química se reconocen varios grupos entre los que encontramos los organoclorados (compuestos que contienen cloro) y los organofosforados (compuestos que contienen fósforo).

**Pluvial:** Precipitación de lluvia que canalizada por el hombre que pasa de llamarse canal pluvial a solamente "pluvial".

**Sedimento:** Material que estaba suspendido en el agua y que se asienta sobre el fondo del cuerpo de agua.

Diversidad de especies: El número de especies que se encuentra dentro de una comunidad biológica.

**Transecta:** Recorrido al aire libre por una línea recta de largo variable que permite estudiar mediante distintas técnicas estadísticas la cantidad de organismos y/o parámetros físico-químicos y biológicos que existen o toman determinado valor en ese recorrido.

**Tributario:** Río que fluye y desemboca en un rio mayor u otro cuerpo de agua.

**Zooplancton:** Invertebrados pequeños (animales sin espina dorsal) que fluyen libremente en los cuerpos de agua.



# ANEXO I: TABLA DE SITIOS DE MONITOREO CMR EN SETENTA (70) ESTACIONES. CONTRATO EVARSA.

Numero Sector de Sitio Nombre de Coordenadas Categorización Circuito Ubicación del sitio de la según Estación en Google Earth Hidrológica **CHMR** KMZ Tributario del Arroyo 34°56'27.80"S Rodríguez Aguas abajo 64 TribRod1 Alta de descarga de 59° 2'19.05"O Lácteos Barraza 34°57'32.38"S Tributario del Arroyo 42 TribRod2 Rodríguez Aguas abajo Alta 58°58'7.51"O de Zona Industrial Tributario del Arroyo 34°56'59.30"S Rodríguez Aguas abajo TribRod3 49 Alta de PDLC General Las 58°55'13.77"O Heras **SUBCUENCA** 1 **RODRIGUEZ** Arroyo Rodríguez. 34°59'9.30"S Aguas abajo de la 38 ArroRod Alta confluencia con el 58°53'02,60´´O Arroyo Los Pozos 34°58'5.26" S Arroyo Rodríguez y 43 ArroRodRuta6 Alta Ruta 6 58°49'5.93" O Arroyo Rodríguez. 34°57'29.8"S Aguas arriba de la 68 ArroRod1 Alta confluencia con el río 58°46'8.3"O Matanza 35°3'46.69"S Arroyo Cebey aguas 40 ArroCeb1 Alta arriba del Lewin SA 58°47'10.62"O 35° 3'36.97"S Arroyo Cebey Aguas **SUBCUENCA** ArroCeb2 abajo dela PDLC Alta 61 58°47'7.93"O **CEBEY** Cañuelas 35° 3'16.58"S Arroyo Cebey. Aguas abajo descarga de la 39 ArroCeb Alta 58°46'54.86"O Planta de Tratamiento de Cañuelas y 3



|   |               |                |                                | industrias con<br>efluentes                                                |      |                       |
|---|---------------|----------------|--------------------------------|----------------------------------------------------------------------------|------|-----------------------|
|   | 58            | ArroCastRuta6  | 34°59'56.98"S                  | Arroyo De Castro.<br>Aguas arriba la                                       |      |                       |
|   |               |                | 58°46'45.05"O                  | confluencia con el<br>Arroyo Cebey                                         | Alta |                       |
|   | 59 ArroCeb3   |                | 35° 0'38.67"S<br>58°45'52.59"O | Arroyo Cebey. Aguas<br>arriba de la<br>confluencia con<br>Arroyo De Castro | Alta |                       |
|   |               |                | 34°57'31.78"S                  | Arroyo Cebey. Aguas<br>arriba de la                                        | Alta |                       |
|   | 41            | ArroCeb4       | 58°45'31.67"O                  | confluencia con el río<br>Matanza                                          |      |                       |
| 3 | 53            | ArroCanuPel    | 35° 3'37.43"S                  | Arroyo La Montañeta<br>y calle Pellegrini                                  | Alta |                       |
|   |               |                | 58°44'24.30"O                  | (aguas debajo de<br>Frigorífico Cañuelas<br>SRL)                           |      |                       |
|   | 54 ArroCanuRi | ArroCanuRuta6  | 35° 2'34.24"S                  | Arroyo La Montañeta<br>y Ruta 6                                            | Alta |                       |
|   |               |                | 58°42'45.38"O                  |                                                                            |      |                       |
|   | 32            | ArroCanu1      | 35° 1'23.55"S                  | Arroyo Cañuelas a la<br>altura de Ruta 3.                                  | Alta |                       |
|   |               |                | 58°40'43.17"O                  | Aguas arriba de arroyo<br>Navarrete                                        |      | SUBCUENCA<br>CAÑUELAS |
|   | 62            | ArroCanuHipico | 34°58'39.63"S                  | Arroyo Cañuelas y                                                          | Alta |                       |
|   |               |                | 58°39'46.19"O                  | Acceso al Club Hípico                                                      |      |                       |
|   | 55            | ArroCanu3      | 34°57'32.70"S                  | Arroyo Cañuelas.<br>Aguas debajo de Ruta                                   | Alta |                       |
|   |               |                | 58°39'08.70"O                  | 205                                                                        |      |                       |
|   | 56 A          | ArroCanuEMC    | 34°55'54.23"S                  | Arroyo Cañuelas<br>Estación de Monitoreo                                   | Alta |                       |
|   |               |                | 58°37'13.62"O                  | Continuo Máximo Paz                                                        |      |                       |
|   | 33            | ArroCanu2      | 34°55'31.11"S                  | Arroyo Navarrete. Aguas arriba del                                         | Alta |                       |
|   |               |                | 58°36'37.40"O                  | arroyo Cañuelas                                                            |      |                       |
|   | 3             | ArroCanu       | 34°54'55.20"S                  | Arroyo Cañuelas<br>(cerca de su                                            | Alta |                       |
|   |               |                | 58°37'55.14"O                  | desembocadura al río<br>Matanza)                                           |      |                       |



| 4 | 34      | ArroChac1      | 34°54'02.48"S                  | Arroyo Chacón en                               | Alta  | SUBCUENCA<br>CHACÓN                             |  |
|---|---------|----------------|--------------------------------|------------------------------------------------|-------|-------------------------------------------------|--|
|   |         |                | 58°44'58.27"O                  | cabecera                                       |       |                                                 |  |
|   | 35      | ArroChac2      | 34°53'33.03"S                  | Arroyo Chacón en<br>Calle Paraná. Aguas        | Alta  |                                                 |  |
|   |         |                | 58°43'6.42"O                   | abajo de Genelba                               |       |                                                 |  |
|   | 36      | ArroChac3      | 34°53'16.47"S                  | Arroyo Chacón en<br>Calle Pumacahua            | Alta  |                                                 |  |
|   |         |                | 58°40'59.26"O                  | (aguas abajo de varias<br>industrias)          |       |                                                 |  |
|   | 4       | ArroChac       | 34°52'54.55"S                  | Arroyo Chacón y calle                          | Alta  |                                                 |  |
|   | 7       | Arrochiae      | 58°40'3.75"O                   | Miguel Planes                                  | 71100 |                                                 |  |
|   | 66      | ArroChac4      | 34°52'33.3"S                   | Arroyo Chacón cerca<br>de desembocadura en     | Alta  |                                                 |  |
|   |         |                | 58°38'42.2"O                   | el río Matanza                                 |       |                                                 |  |
| - | 57      | ArroCepi       | 34°51'58.74"S                  | Arroyo Cepita aguas<br>abajo de la descarga    | Alta  |                                                 |  |
| 5 | 65      | TribMora       | 58°39'51.08"O                  | de Refres Now                                  | Alta  |                                                 |  |
|   |         |                | 34°55'2.02"S                   | Canal Industrial (Aguas<br>abajo de Compañía   |       |                                                 |  |
|   | 03      |                | 58°57'28.58"O                  | Alimenticia los Andes)                         |       | SUBCUENCA                                       |  |
|   | 44      | ArroMoraRuta6  | 34°52'22.48"S                  | Arroyo Morales y Ruta                          | Alta  |                                                 |  |
|   |         |                | 58°52'14.42"O                  | 6                                              |       |                                                 |  |
|   | 45      | ArroLaPa200    | 34°49'24.09"S                  | Arroyo La Paja y Ruta<br>200                   | Alta  |                                                 |  |
|   |         |                | 58°51'57.19"O                  |                                                |       |                                                 |  |
|   | 37      | ArroMora1      | 34°50'19.02"S                  | Arroyo Morales Aguas abajo de la descarga Alta |       | MORALES                                         |  |
|   |         |                | 58°49'59.76"O                  | del Arroyo La Paja                             |       |                                                 |  |
|   | 46      | ArroMoraLaCand | 34°49'4,86"S                   | Arroyo Morales y Calle<br>Querandíes           | Alta  |                                                 |  |
|   | 67 Arro |                | 58°43'22.72"O<br>34°47'30.72"S | Arroyo Morales. Aguas                          | Alta  |                                                 |  |
|   |         | ArroMora2      | 34 47 30.72 3                  | arriba de la                                   |       |                                                 |  |
|   |         |                | 58°40'15.82"O                  | confluencia con<br>Arroyo Pantanoso            |       |                                                 |  |
|   | 50      | ArroPant200    | 34°45'39.20"S                  | Arroyo Pantanoso<br>Aguas arriba de la         | Alta  | SUBCUENCA DEL<br>A° DE LA CAÑADA<br>PANTANOSA O |  |
|   |         |                | 58°49'09.1"O                   | PDLC                                           |       |                                                 |  |
|   | 51      | ArroPant1      | 34°45'45.20"S                  | Arroyo Pantanoso                               | Alta  | PANTANOSO                                       |  |



|   |    |               | 58°48'37.40"O                  | Aguas abajo de la<br>PDLC                                              |       |                        |
|---|----|---------------|--------------------------------|------------------------------------------------------------------------|-------|------------------------|
|   | 47 | ArroPant2     | 34°47'18.42"S                  | Arroyo Pantanoso y puente CEAMCE                                       | Alta  |                        |
|   |    |               | 58°40'19.63"O                  | depósito de autos                                                      |       |                        |
|   | 48 | ArroMoraDoSc  | 34°47'7.58"S                   | Arroyo las Víboras y<br>Calle Domingo                                  | Alta  | SUBCUENCA A°           |
|   |    |               | 58°38'45.86"O                  | Scarlatti                                                              |       | BARREIRO               |
|   | 8  | ArroMora      | 34°47'49.85"S                  | Arroyo Morales (antes de su desembocadura                              | Alta  |                        |
|   |    |               | 58°38'10.88"O                  | en el río Matanza)                                                     |       | SUBCUENCA<br>MORALES   |
|   | 70 | ArroMoraRuta3 | 34°48'14.64"S                  | Arroyo Morales – cruce con Ruta 3.                                     | Media | WORALLS                |
|   |    |               | 58°37'57.29"O                  |                                                                        |       |                        |
|   | 1  | MatyRut3      | 34°55'21.42"S                  | Río Matanza (cruce con Ruta Nacional N°                                | Alta  | SUBCUENCA              |
|   |    |               | 58°43'17,19"O                  | 3).                                                                    |       | RIO MATANZA            |
|   | 60 | ArroOrt1      | 34°45′41.48′′S                 | Arroyo Ortega y Av. De<br>la Noria Aguas arriba<br>de la desembocadura | Media |                        |
|   |    |               | 58°32′19,89′′O                 | al Río Matanza                                                         |       |                        |
|   | 63 | ArroOrt2      | 34°50′30.10′′S                 | Arroyo Ortega y Av. De<br>la Noria Aguas abajo                         | Media |                        |
|   |    |               | 58°28′42.08′′O                 | Ganadera Arenales                                                      |       | SUBCUENCA A°<br>ORTEGA |
|   | 71 | ArroRossi     | 34°48'25.54"S                  | Arroyo Rossi. Desembocadura                                            | Media |                        |
|   |    |               | 58°30'23.65"O                  | Laguna de Rocha                                                        |       |                        |
| 6 | 72 | DescRocha     | 34°44'51.19"S                  | Descarga Laguna de<br>Rocha al Río Matanza                             | Media |                        |
|   |    |               | 58°31'16.28"O                  | Nociia ai Nio iviatariza                                               |       |                        |
|   | 2  | Mplanes       | 34°53'35.44"S                  | Río Matanza (calle<br>Planes)                                          | Alta  |                        |
|   |    |               | 58°39'13.50"O<br>34°52'15.24"S | ·                                                                      |       |                        |
|   | 69 | MatSpegazzini | 58°38'32,49"0                  | Río Matanza – Máximo<br>Paz.                                           | Media | CURCUENCA              |
|   | _  | ne:           | 34°51'49,96"S-                 | Río Matanza y Calle                                                    | NA II | SUBCUENCA RIO MATANZA  |
|   | 5  | Mherrera      | 58°38'22.59"O                  | Máximo Herrera                                                         | Media | NIO WIATAWZA           |
|   | 6  | AgMolina      | 34°50'10.75"S                  | Río Matanza (y calle<br>Agustín Molina,                                | Media |                        |
|   |    |               | 58°37'17.44"O                  | - Partido de La<br>Matanza)                                            |       |                        |



|   | 20 | DPel2500  | 34°40'20.82"S                   | Descarga sobre el                                                   | Baja  |                            |
|---|----|-----------|---------------------------------|---------------------------------------------------------------------|-------|----------------------------|
|   | 19 | ArroCild  | 58°26'26.55"O                   | de su desembocadura<br>en el Riachuelo)                             | Baja  |                            |
|   |    |           | 34°40'47.60"S                   | Arroyo Cildañez (cerca                                              |       | ONDAINA I                  |
| 8 | 18 | CanUnamu  | 58°27'03.63"O                   | cerca de su<br>desembocadura en el<br>Riachuelo)                    | Baja  | RIACHUELO<br>URBANA I      |
|   |    |           | 34°41'39.08"S                   | Canal Unamuno.                                                      |       | SUBCUENCA                  |
|   | 17 | PteLaNor  | 58°27'41.43"O                   | Puente de La Noria)                                                 | Baja  |                            |
|   |    |           | 34°42'15.98"S                   | Riachuelo (cruce con                                                |       |                            |
|   | 16 | ArrodRey  | 58°28'1.57"                     | Arroyo del Rey (cerca<br>de su desembocadura<br>en el río Matanza)  | Ваја  | SUBCUENCA DEL<br>REY       |
|   |    |           | 58°28'59.16"O                   | ·                                                                   |       | RIO MATANZA                |
|   | 15 | PteColo   | 34°43'36.62"S                   | Río Matanza (cruce<br>con Puente Colorado)                          | Baja  | SUBCUENCA                  |
|   |    |           | 58°28'55.14"O                   | río Matanza)                                                        |       | CATALIIVA                  |
|   | 14 | ArroSCat  | 34°44'10.60"S                   | Arroyo Santa Catalina<br>(cerca de su<br>desembocadura en el        | Baja  | SUBCUENCA STA.<br>CATALINA |
|   |    |           |                                 | río Matanza/MI)                                                     |       | RIO MATANZA                |
| 7 | 13 | DepuOest  | 34°43'15.96"S-<br>58°30'11.98"O | Descarga de Planta<br>Depuradora Sudoeste<br>(sobre cauce viejo del | Media | SUBCUENCA                  |
|   | 12 | AutoRich  | 58°31'18.01"O                   | - con Autopista Gral.<br>Ricchieri)                                 | Media | RIO MATANZA                |
|   |    |           | 34°44'53.48"S                   | Río Matanza (cruce                                                  |       | SUBCUENCA                  |
|   | 11 | ArroDMar  | 58°33'48.86"                    | cruce con Avenida<br>Rojo)                                          | Media | MARIO                      |
|   |    |           | 34°44'21.77"S                   | Arroyo Don Mario                                                    |       | SUBCUENCA DON              |
|   | 10 | ArroAgui  | 58°34'44.66"O                   | desembocadura al río<br>Matanza)                                    | Media | SUBCUENCA<br>AGUIRRE       |
|   |    |           | 34°49'34.42"S                   | Arroyo Aguirre (cerca                                               |       |                            |
|   | 9  | MataAMor  | 34°47'40.85"S<br>58°35'23.27"O  | Río Matanza – Aguas<br>abajo Arroyo Morales                         | Media |                            |
|   |    |           | 58°37'1.00"O                    | (MD)                                                                |       |                            |
|   | 7  | RPlaTaxco | 500071: 00"                     | Acceso por calle que sale a Rancho Taxco                            | Media |                            |
|   |    |           | 34°49'35.76"S                   | Río Matanza y calle<br>Río de la Plata (MI)                         |       |                            |



|    |                    | 58°26'1.53"O  | Riachuelo (a la altura<br>de calle Carlos<br>Pellegrini al 2500/MI) |      |           |
|----|--------------------|---------------|---------------------------------------------------------------------|------|-----------|
| 21 | DPel2100           | 34°40'10.49"S | Descarga sobre el<br>Riachuelo (a la altura                         | Baja |           |
|    |                    | 58°25'52.87"O | calle Carlos Pellegrini<br>al 2100/MI)                              |      |           |
|    |                    | 34°40'2.17"S  | Descarga sobre el<br>Riachuelo (a 30 m                              |      |           |
| 22 | DPel1900           | 58°25'41.48"O | aguas abajo cruce de<br>calles Carlos Pellegrini<br>1900 y Millán)  | Baja |           |
| 23 | CondErez           | 34°39'28.67"S | Conducto Erezcano<br>(cerca desembocadura                           | Baja |           |
|    |                    | 58°25'21.93"O | en el Riachuelo)                                                    | .,   |           |
| 24 | PteUribu           | 34°39'36.43"S | Riachuelo (cruce con<br>Puente Uriburu)                             | Baja |           |
| 25 | ArroTeuc           | 34°39'27.74"S | Arroyo Teuco (cerca de su desembocadura                             | Baja |           |
|    |                    | 58°24'41.19"O | en el Riachuelo)                                                    |      |           |
| 28 | PteVitto           | 34°39'40.21"S | Riachuelo (cruce con<br>Puente Victorino de la                      | Baja |           |
|    |                    | 58°23'18.34"O | Plaza)                                                              |      | SUBCUENCA |
| 29 | DprolPer           | 34°39'26.96"S | Descarga sobre el<br>Riachuelo                                      | Baja | RIACHUELO |
|    | <b>5 F</b> 10 H Cl | 58°22'59.10"O | (prolongación de calle<br>Perdriel/MI)                              | 20,0 | URBANA II |
| 52 | ClubRA             | 34°39'29.19"S | Club Regatas de                                                     | Baja |           |
|    |                    | 58°22'43.07"O | Avellaneda                                                          |      |           |
| 30 | PtePueyr           | 34°39'24.43"S | Riachuelo (cruce con<br>Puente Pueyrredón                           | Baja |           |
|    |                    | 58°22'25.15"O | viejo)                                                              |      |           |
| 31 | PteAvell           | 34°38'16.88"S | Riachuelo (cruce con<br>Puente Avellaneda)                          | Baja |           |
|    |                    | 58°21'20.48"O | Puente Avenaneda)                                                   |      |           |



ANEXO II. TABLAS DE DATOS (7 PARÁMETROS) DEL MUESTREO DE CALIDAD EN LA CUENCA MATANZA RIACHUELO CON SONDA MULTIPARAMÉTRICA— JULIO-SEPTIMEBRE 2015.

# ANEXO II

|  | icoquímicos de Calidad de Agua Medidos en Campo de las 70 Estaciones de la Cuenca Matanza - Riac |  |
|--|--------------------------------------------------------------------------------------------------|--|
|  |                                                                                                  |  |

| Circuito | Nº Orden | Ubicación del sitio                                                                                                                               | Número de Sitio<br>según KMZ | Nombre de Estación                  | Categorización<br>Hidrológica | Fecha                    | Hora           | pH           | Temperatura    | Conductividad | Sólidos<br>Disueltos | Salinidad    | OD           | OD           |
|----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|-------------------------------|--------------------------|----------------|--------------|----------------|---------------|----------------------|--------------|--------------|--------------|
|          |          | Tributario del Arroyo Rodríguez Aguas abajo de descarga de                                                                                        | -                            |                                     | Hidrologica                   | dd/mm/aaaa               | hh:mm          | ирН          | °C             | μS/cm         | mg/l                 | psu          | %            | mg/l         |
|          | 1        | Lácteos Barraza  Tributario del Arroyo Rodríguez Aguas abajo de descarga de  Lácteos Barraza  Tributario del Arroyo Rodríguez Aguas abajo de Zona | 64                           | TribRod1 (64)                       |                               | 16/07/2015               | 10:30          | 9,57         | 9,65           | 2378          | 1189                 | 1,23         | 0,0          | 0,0          |
|          | 3        | Industrial Tributario del Arroyo Rodríguez Aguas abajo de PDLC General                                                                            | 42                           | TribRod2 (42)                       |                               | 16/07/2015               | 11:15          | 8,32<br>8,77 | 7,47<br>9.67   | 1946<br>1703  | 973<br>851           | 1,00<br>0,87 | 75,8<br>62,3 | 9,14<br>7,13 |
| 1        | 4        | Las Heras  Arroyo Rodríguez. Aguas abajo de la confluencia con el                                                                                 | 38                           | ArroRod (38)                        | SUBCUENCA<br>RODRIGUEZ        | 16/07/2015               | 11:48          | 8,62         | 8,52           | 1552          | 776                  | 0,79         | 02,3         | 7,13         |
|          | 5        | Arroyo Los Pozos Arroyo Rodríguez y Ruta 6                                                                                                        | 43                           | ArroRodRuta6 (43)                   |                               | 16/07/2015               | 12:35          | 8,99         | 9,13           | 1558          | 779                  | 0,79         |              |              |
|          | 6        | Arroyo Rodríguez. Aguas arriba de la confluencia con el río<br>Matanza                                                                            | 68                           | ArroRod1 (68)                       |                               | 17/07/2015               | 10:35          | 8,32         | 7,81           | 1552          | 776                  | 0,79         | 50,8         | 6,08         |
|          | 7        | Arroyo Cebey aguas arriba del Lewin SA                                                                                                            | 40                           | ArroCeb1 (40)                       |                               | 17/07/2015               | 12:50          | 9,49         | 7,53           | 1724          | 862                  | 0,88         |              |              |
|          | 8        | Arroyo Cebey Aguas abajo dela PDLC Cañuelas                                                                                                       | 61                           | ArroCeb2 (61)                       |                               | 17/07/2015               | 12:40          | 8,33         | 16,6           | 3905          | 1952                 | 2,08         | 25,1         | 2,44         |
| 2        | 9        | Arroyo Cebey. Aguas abajo descarga de la Planta de<br>Tratamiento de Cañuelas y 3 industrias con efluentes                                        | 39                           | ArroCeb (39)                        | SUBCUENCA CEBEY               | 17/07/2015               | 12:25          | 8,12         | 14,89          | 2680          | 1340                 | 1,40         | 0,0          | 0,0          |
|          | 10       | Arroyo De Castro. Aguas arriba la confluencia con el Arroyo  Cebey  Arroyo Cebey. Aguas arriba de la confluencia con Arroyo De                    | 58                           | ArroCastRuta6 (58)                  |                               | 17/07/2015               | 12:05          | 9,55         | 9,08           | 1238          | 619                  | 0,62         |              |              |
|          | 11       | Castro  Arroyo Cebey. Aguas arriba de la confluencia con el río                                                                                   | 59                           | ArroCeb3 (59)                       |                               | 17/07/2015               | 11:54          | 8,79         | 9,37           | 3482<br>2514  | 1741                 | 1,84         | 0,9          | 0,11         |
|          | 12       | Matanza  Arroyo La Montañeta y calle Pellegrini (aguas debajo de                                                                                  | 41<br>53                     | ArroCeb4 (41)  ArroCanuPel (53)     |                               | 22/07/2015               | 11:31          | 8,68<br>7,77 | 7,71<br>12,19  | 8058          | 4028                 | 1,30<br>4,50 | 7,7<br>53,1  | 0,92<br>5,52 |
|          | 14       | Frigorífico Cañuelas SRL)  Arroyo La Montañeta y Ruta 6                                                                                           | 54                           | ArroCanuRuta6 (54)                  |                               | 22/07/2015               | 11:34          | 7,95         | 7,34           | 6419          | 3210                 | 3,52         | 68,5         | 8,02         |
|          | 15       | Arroyo Cañuelas a la altura de Ruta 3. Aguas arriba de arroyo<br>Navarrete                                                                        | 32                           | ArroCanu1 (32)                      |                               |                          |                |              |                |               |                      |              |              |              |
| 3        | 16       | Arroyo Cañuelas y Acceso al Club Hípico                                                                                                           | 62                           | ArroCanuHipico (62)                 | SUBCUENCA                     | 22/07/2015               | 12:48          | 8,04         | 8,88           | 2449          | 1225                 | 1,27         |              |              |
| ,        | 17       | Arroyo Cañuelas. Aguas debajo de Ruta 205                                                                                                         | 55                           | ArroCanu3 (55)                      | CAÑUELAS                      | 22/07/2015               | 04:19          | 8,68         | 10,53          | 2238          | 1119                 | 1,16         |              |              |
|          | 18       | Arroyo Cañuelas Estación de Monitoreo Contínuo Máximo<br>Paz                                                                                      | 56                           | ArroCanuEMC (56)                    |                               | 22/07/2015               | 13:52          | 8,59         | 10,82          | 2198          | 1099                 | 1,13         | 90,1         | 9,85         |
|          | 19       | Arroyo Navarrete. Aguas arriba del arroyo Cañuelas                                                                                                | 33                           | ArroCanu2 (33)                      |                               | 22/07/2015               | 05:45          | 8,74         | 11,98          | 1170          | 585                  | 0,59         |              |              |
| <u> </u> | 20       | Arroyo Cañuelas (cerca de su desembocadura al río Matanza)                                                                                        | 3                            | ArroCanu (3)                        |                               | 22/07/2015               | 15:03          | 8,83         | 10,12          | 1541          | 772                  | 0,79         | 0.0          | 0.0          |
|          | 21       | Arroyo Chacón en cabecera  Arroyo Chacón en Calle Paraná. Aguas abajo de Genelba                                                                  | 34                           | ArroChac1 (34)  ArroChac2 (35)      |                               | 23/07/2015               | 09:49<br>10:13 | 7,97<br>7,74 | 5,98<br>7,16   | 2540<br>733   | 1270<br>367          | 1,31<br>0.36 | 0,0<br>40,9  | 0,0<br>4,9   |
|          | 23       | Arroyo Chacón en Calle Pumacahua (aguas abajo de varias                                                                                           | 36                           | ArroChac2 (35) ArroChac3 (36)       |                               | 23/07/2015               | 10:13          | 8,06         | 10,32          | 1753          | 876                  | 0,89         | 40,9         | 5,39         |
| 4        | 24       | industrias)  Arroyo Chacón y calle Miguel Planes                                                                                                  | 4                            | ArroChac (4)                        | SUBCUENCA CHACÓN              | 23/07/2015               | 11:06          | 7,24         | 26,03          | 4575          | 2287                 | 2,43         | 11,5         | 0,91         |
|          | 25       | Arroyo Chacón cerca a su desembocadura en el río Matanza                                                                                          | 66                           | ArroChac4 (66)                      |                               | 27/08/2015               | 10:38          | 7,75         | 19,98          | 5186          | 2593                 | 2,80         | 16,5         | 1,48         |
|          | 26       | Arroyo Cepita aguas abajo de la descarga de Refres Now                                                                                            | 57                           | ArroCepi (57)                       |                               | 27/08/2015               | 10:03          | 8,2          | 18,56          | 1190          | 595                  | 0,60         | 69           | 6,46         |
|          | 27       | Canal Industrial (Aguas abajo de Compañía Alimenticia los<br>Andes)                                                                               | 65                           | TribMora (65)                       |                               | 29/07/2015               | 10:43          | 7,32         | 14,81          | 2504          | 1252                 | 1,30         | 16,4         | 1,65         |
|          | 28       | Arroyo Morales y Ruta 6                                                                                                                           | 44                           | ArroMoraRuta6 (44)                  |                               | 29/07/2015               | 10:05          | 7,67         | 15,56          | 1162          | 581                  | 0,58         | 42,8         | 4,06         |
|          | 29       | Arroyo La Paja y Ruta 200 Arroyo Morales Aguas abajo de la descarga del Arroyo La                                                                 | 45                           | ArroLaPa200 (45)                    | SUBCUENCA MORALES             | 29/07/2015               | 11:22          | 7,59         | 17,06          | 1866          | 929                  | 0,95         | 31,9         | 3,05         |
|          | 30       | Paja  Arroyo Morales y Calle Querandíes                                                                                                           | 37<br>46                     | ArroMora1 (37)  ArroMoraLaCand (46) |                               | 29/07/2015<br>01/09/2015 | 11:43          | 7,77         | 16,63<br>13,42 | 1335<br>1285  | 667                  | 0,67         | 17,7<br>38,9 | 1,72<br>4,12 |
|          | 32       | Arroyo Morales. Aguas arriba de la confluencia con Arroyo                                                                                         | 67                           | ArroMora2 (67)                      |                               | 29/07/2015               | 14:04          | 7,84         | 16,47          | 1336          | 668                  | 0,67         | 12,6         | 1,22         |
| 5        | 33       | Pantanoso Arroyo Pantanoso Aguas arriba de la PDLC                                                                                                | 50                           | ArroPant200 (50)                    |                               | 29/07/2015               | 12:30          | 7,31         | 15,97          | 1155          | 578                  | 0,58         | 20,6         | 2,03         |
|          | 34       | Arroyo Pantanoso Aguas abajo de la PDLC                                                                                                           | 51                           | ArroPant1 (51)                      | SUBCUENCA CAÑADA<br>PANTANOSA | 29/07/2015               | 12:38          | 7,38         | 16,3           | 1090          | 542                  | 0,54         | 22,9         | 2,23         |
|          | 35       | Arroyo Pantanoso y puente CEAMCE deposito de autos                                                                                                | 47                           | ArroPant2 (47)                      |                               | 29/07/2015               | 14:15          | 8,38         | 16,4           | 927           | 464                  | 0,46         | 101,6        | 9,86         |
|          | 36       | Arroyo las Viboras y Calle Domingo Scarlatti  Arroyo Morales (antes de su desembocadura en el río                                                 | 48                           | ArroMoraDoSc (48)                   | SUBCUENCA Aº<br>BARREIRO      | 29/07/2015               | 14:41          | 7,77         | 17,48          | 1162          | 581                  | 0,58         | 29,9         | 2,88         |
|          | 37       | Matanza)                                                                                                                                          | 8                            | ArroMora (8)                        | SUBCUENCA MORALES             | 29/07/2015               | 14:55          | 8,22         | 16,63          | 1223          | 611                  | 0,61         | 85,0         | 8,29         |
|          | 38       | Arroyo Morales – cruce con Ruta 3.  Río Matanza (cruce con Ruta Nacional N° 3)                                                                    | 70                           | ArroMoraRuta3 (70)  MatyRut3 (1)    | RÍO MATANZA                   | 29/07/2015               | 15:16<br>09:20 | 7,53<br>7,64 | 16,41          | 956<br>2211   | 8,78<br>1106         | 1,14         | 24,3         | 2,33         |
|          | 40       | Arroyo Ortega y Av. De la Noria Aguas arriba de la                                                                                                | 60                           | ArroOrt1 (60)                       | RIO WATANZA                   | 01/09/2015               | 13:21          | 7,68         | 14,21          | 1559          | 779                  | 0.79         | 51.4         | 5.36         |
|          | 41       | desembocadura al Río Matanza  Arroyo Ortega y Av. De la Noria Aguas abajo Ganadera  Arenales                                                      | 63                           | ArroOrt2 (63)                       | SUBCUENCA A®                  | 01/09/2015               | 13:58          | 7,06         | 19,52          | 1340          | 670                  | 0,67         | 19,6         | 1,81         |
|          | 42       | Arroyo Rossi. Desembocadura Laguna de Rocha                                                                                                       | 71                           | ArroRossi (71)                      | ORTEGA                        |                          |                |              |                |               |                      |              |              |              |
|          | 43       | Descarga Laguna de Rocha al Río Matanza                                                                                                           | 72                           | DescRocha (72)                      |                               |                          |                |              |                |               |                      |              |              |              |
| 6        | 44       | Río Matanza (calle Planes)                                                                                                                        | 2                            | Mplanes (2)                         |                               | 23/07/2015               | 10:32          | 7,89         | 9,91           | 2421          | 1210                 | 1,26         | 38,8         | 4,34         |
|          | 45       | Río Matanza – Máximo Paz.                                                                                                                         | 69                           | MatSpegazzini (69)                  |                               | 27/08/2015               | 10:55          | 8,25         | 16,12          | 2160          | 1080                 | 1,11         | 9,4          | 0,93         |
|          | 46<br>47 | Río Matanza y Calle Máximo Herrera  Río Matanza (y calle Agustín Molina, Partido de La Matanza)                                                   | 6                            | Mherrera (5) AgMolina (6)           | RÍO MATANZA                   | 27/08/2015<br>27/08/2015 | 11:55          | 8,21<br>8,31 | 16,1<br>16,39  | 2105          | 1052                 | 1,08         | 5,5<br>2,6   | 0,54         |
|          | 48       | Río Matanza y calle Río de la Plata (MI) Acceso por calle que                                                                                     | 7                            | AgMolina (6)  RPlaTaxco (7)         |                               | 05/08/2015               | 10:28          | 7,97         | 14,79          | 1337          | 668                  | 0,67         | 2,6<br>86,8  | 8,78         |
|          | 49       | sale a Rancho Taxco (MD)  Río Matanza – Aguas abajo Arroyo Morales                                                                                | 9                            | MataAMor (9)                        |                               | 05/08/2015               | 11:21          | 7,92         | 13,72          | 1215          | 607                  | 0,61         | 83,1         | 8,61         |
|          | 50       | Arroyo Aguirre (cerca desembocadura al río Matanza)                                                                                               | 10                           | ArroAgui (10)                       | SUBCUENCA AGUIRRE             | 05/08/2015               | 12:11          | 8,49         | 12,7           | 1326          | 663                  | 0,67         | 84,7         | 8,97         |
|          | 51       | Arroyo Don Mario (cruce con Avenida Rojo)                                                                                                         | 11                           | ArroDMar (11)                       | SUBCUENCA DON<br>MARIO        | 01/09/2015               | 12:52          | 7,51         | 17,87          | 925           | 462                  | 0,46         | 100,3        | 9,67         |
|          | 52       | Río Matanza (cruce con Autopista Gral. Ricchieri)  Descarga de Planta Depuradora Sudoeste (sobre cauce viejo                                      | 12                           | AutoRich (12)                       | RÍO MATANZA                   | 01/09/2015               | 13:33          | 7,76         | 16,47          | 1653          | 826                  | 0,84         | 1,4          | 0,14         |
| 7        | 53       | Descarga de Planta Depuradora Sudoeste (sobre cauce viejo<br>del río Matanza/MI)  Arroyo Santa Catalina (cerca de su desembocadura en el río      | 13                           | DepuOest (13)                       | SUBCUENCA STA.                | 01/09/2015               | 13:56          | 7,74         | 18,91          | 1105          | 552                  | 0,55         | 9,3          | 0,88         |
|          | 54       | Matanza)  Río Matanza (cruce con Puente Colorado)                                                                                                 | 14                           | ArroSCat (14)                       | CATALINA                      |                          |                |              |                |               |                      |              |              |              |
|          | 55       | Río Matanza (cruce con Puente Colorado)  Arroyo del Rey (cerca de su desembocadura en el río                                                      | 15                           | PteColo (15) ArrodRey (16)          | RÍO MATANZA SUBCUENCA DEL REY |                          |                |              |                |               |                      |              |              |              |
|          | 57       | Matanza)  Riachuelo (cruce con Puente de La Noria)                                                                                                | 17                           | PteLaNor (17)                       |                               | 01/09/2015               | 12:54          | 7,78         | 17,66          | 18,14         | 907                  | 0,93         | 1,6          | 0,15         |
|          | 58       | Canal Unamuno. (cerca de su desembocadura en el<br>Riachuelo)                                                                                     | 18                           | CanUnamu (18)                       |                               |                          |                |              |                |               |                      |              |              |              |
|          | 59       | Arroyo Cildañez (cerca de su desembocadura en el Riachuelo)                                                                                       | 19                           | ArroCild (19)                       |                               | 01/09/2015               |                | 7,87         | 17,89          | 1583          | 789                  | 0,8          | 2,2          | 0,21         |
| 8        | 60       | Descarga sobre el Riachuelo (a la altura de calle Carlos<br>Pellegrini al 2500/MI)                                                                | 20                           | DPel2500 (20)                       | RIACHUELO U I                 |                          |                |              |                |               |                      |              |              |              |
|          | 61       | Descarga sobre el Riachuelo (a la altura calle Carlos<br>Pellegrini al 2100/MI)  Descarga sobre el Riachuelo (a 30 m aguas abajo cruce de         | 21                           | DPel2100 (21)                       |                               | 01/09/2015               | 16:19          | 7,75         | 18,63          | 1300          | 629                  | 0,63         | 2,5          | 0,23         |
|          | 62       | calles Carlos Pellegrini 1900 y Millán)                                                                                                           | 22                           | DPel1900 (22)                       |                               |                          |                |              |                |               |                      |              |              |              |
|          | 63       | Conducto Erezcano (cerca desembocadura en el Riachuelo)                                                                                           | 23                           | CondErez (23) PteUribu (24)         |                               | 01/09/2015               | 11:51          | 7 75         | 18.18          | 1600          | 803                  | 0,81         | 2.2          | 0,21         |
|          | 64       | Riachuelo (cruce con Puente Uriburu)  Arroyo Teuco (cerca de su desembocadura en el Riachuelo)                                                    | 24                           | PteUribu (24) ArroTeuc (25)         |                               | 31/03/2015               | 11:51          | 7,75         | 10,15          | 1000          | oU3                  | 0,81         | 2,2          | 0,21         |
|          | 66       | Riachuelo (cruce con Puente Victorino de la Plaza)                                                                                                | 28                           | PteVitto (28)                       |                               | 01/09/2015               | 11:26          | 7,54         | 17,53          | 853           | 427                  | 0,42         | 4,2          | 0,41         |
|          | 67       | Descarga sobre el Riachuelo (prolongación de calle<br>Perdriel/MI)                                                                                | 29                           | DproiPer (29)                       | SUBCUENCA U II                |                          |                |              |                |               |                      |              |              |              |
| 9        | 68       | Club Regatas de Avellaneda                                                                                                                        | 52                           | ClubRA (52)                         |                               | 01/09/2015               | 10:22          | 7,39         | 17,56          | 705           | 352                  | 0,35         | 20,7         | 2,01         |
|          | 69       | Riachuelo (cruce con Puente Pueyrredón viejo)                                                                                                     | 30                           | PtePueyr (30)                       |                               | 01/09/2015               | 09:58          | 7,37         | 16,67          | 716           | 358                  | 0,35         | 20,4         | 1,98         |
|          | 70       | Riachuelo (cruce con Puente Avellaneda)                                                                                                           | 31                           | PteAvell (31)                       |                               | 01/09/2015               | 09:34          | 7,17         | 17,62          | 717           | 319                  | 0,35         | 52,3         | 5,05         |



| ANEXO III. TABLAS DE DATOS DEL MUESTREO DE ALMIRANTE BROWN – |
|--------------------------------------------------------------|
| ARROYO DEL REY. JUNIO, JULIO Y AGOSTO 2015.                  |
|                                                              |
|                                                              |
|                                                              |
|                                                              |
|                                                              |

|                             |          |       |         |         | Aº Del Re | y y Jose Ingen | nieros  |         |       |       |       |       |       |       |        |
|-----------------------------|----------|-------|---------|---------|-----------|----------------|---------|---------|-------|-------|-------|-------|-------|-------|--------|
| AÑO                         | -        |       |         |         |           |                | 20      | 15      |       |       |       |       |       | VALOR | ACUMAR |
| MES                         | -        | 01/15 | 02/15   | 03/15   | 04/15     | 05/15          | 06/15   | 07/15   | 08/15 | 09/15 | 10/15 | 11/15 | 12/15 | MEDIO | USO IV |
| Parametros                  | Unidad   | Valor | Valor   | Valor   | Valor     | Valor          | Valor   | Valor   | Valor | Valor | Valor | Valor | Valor |       |        |
| рН                          | upH      | 8,89  | 7,8     | 7,92    | 7,88      | 7,89           | 8,53    | 7,92    |       |       |       |       |       |       | e/ 6-9 |
| Temperatura                 | ōС       | 24    | 20,8    | 17,6    | 18,2      | 19,3           | 10,5    | 16      |       |       |       |       |       |       | <35    |
| Oxígeno Disuelto            | mg/l     | 6,9   | 7       | 5,9     | 6,3       | 4,6            | 7,3     | 6,5     |       |       |       |       |       |       | >2     |
| Conductividad               | uS/cm    | 750   | 705     | 740     | 735       | 800            | 600     | 750     |       |       |       |       |       |       | -      |
| RTE (105 ºC)                | mg/dm    | 430   | 405     | 430     | 430       | 480            | 355     | 435     |       |       |       |       |       |       | -      |
| Sol. Sed. 10 min.           | cm3/dcm3 | 0,2   | Ausente | Ausente | Ausente   | 0,2            | Ausente | Ausente |       |       |       |       |       |       | -      |
| Sol. Sed. 2 hs.             | cm3/dcm3 | 0,3   | 0,1     | Ausente | Ausente   | 0,2            | Ausente | Ausente |       |       |       |       |       |       | -      |
| Alcalinidad Total           | mg/dm3   | 344   | 348     | 336     | 340       | 408            | 332     | 324     |       |       |       |       |       |       | -      |
| Alcalinidad de Carbonatos   | mg/dm3   | 24    | 0       | 0       | 0         | 0              | 32      | 0       |       |       |       |       |       |       | -      |
| Alcalinidad de Bicarbonatos | mg/dm3   | 320   | 348     | 336     | 340       | 408            | 300     | 324     |       |       |       |       |       |       | -      |
| Cloruros                    | mg/dm3   | 28    | 22      | 24      | 22        | 32             | 22      | 23      |       |       |       |       |       |       | -      |
| Sodio                       | mg/dm3   | 160   | 160     | 165     | 155       | 155            | 160     | 140     |       |       |       |       |       |       | -      |
| Nitrógeno Total Kjeldahl    | mg/dm3   | 0,61  | 0,92    | 0       | 0         | 13,8           | 0,4     | 0       |       |       |       |       |       |       | -      |
| Nitrógeno de Amoniaco       | mg/dm3   | 0,21  | 0,18    | 0       | 0         | 13             | 0       | 0       |       |       |       |       |       |       | -      |
| Nitrógeno Orgánico          | mg/dm3   | 0,4   | 0,74    | 0       | 0         | 0,8            | 0,4     | 0       |       |       |       |       |       |       | -      |
| DBO                         | mg/l     | <2    | <2      | <2      | <2        | <2             | <2      | <2      |       |       |       |       |       |       | <15    |
| DQO                         | mg/l     | 13    | 2       | 5       | 5         | 20             | 6       | 9       |       |       |       |       |       |       | -      |
| SSEE                        | mg/dm3   | <10   | <10     | <10     | <10       | <10            | <10     | <10     |       |       |       |       |       |       | -      |
| SAAM                        | mg/dm3   | <0,20 | <0,20   | <0,20   | <0,20     | <0,20          | <0,20   | <0,20   |       |       |       |       |       |       | <5     |
| Sulfuros                    | ug/l     | <100  | <100    | <100    | <100      | <100           | <100    | <100    |       |       |       |       |       |       | <0,1   |
| Zinc                        | ug/l     | <100  | <100    | <100    | <100      | <100           | <100    | <100    |       |       |       |       |       |       | -      |
| Cobre                       | ug/l     | <10   | <10     | <10     | <10       | <10            | <10     | <10     |       |       |       |       |       |       | -      |
| Plomo                       | ug/l     | <20   | <20     | <20     | <20       | <20            | <20     | <20     |       |       |       |       |       |       | -      |
| Cromo Total                 | ug/l     | <50   | <50     | <50     | <50       | <50            | <50     | <50     |       |       |       |       |       |       | -      |
| Fosforo Total               | ug/l     | 2040  | 580     | 220     | 0         | 2400           | 220     | 240     |       |       |       |       |       |       | <5000  |
| Sustancias Fenolicas        | ug/l     | <50   | <50     | <50     | <50       | <50            | <50     | <50     |       |       |       |       |       |       | <1000  |
| Cianuro Total               | ug/l     | <30   | <30     | <30     | <30       | <30            | <30     | <30     |       |       |       |       |       |       | <100   |
| Hidrocarburos               | ug/l     | <1000 | <1000   | <1000   | <1000     | <1000          | <1000   | <1000   |       |       |       |       |       |       | <10000 |

| Aº Del Rey y Drago          |          |       |       |       |         |       |       |         |       |       |       |       |       |       |        |
|-----------------------------|----------|-------|-------|-------|---------|-------|-------|---------|-------|-------|-------|-------|-------|-------|--------|
| AÑO                         | -        |       |       |       |         |       | 20    | 15      |       |       |       |       |       | VALOR | ACUMAR |
| MES                         | -        | 01/15 | 02/15 | 03/15 | 04/15   | 05/15 | 06/15 | 07/15   | 08/15 | 09/15 | 10/15 | 11/15 | 12/15 | MEDIO | USO    |
| Parametros                  | Unidad   | Valor | Valor | Valor | Valor   | Valor | Valor | Valor   | Valor | Valor | Valor | Valor | Valor |       |        |
| рН                          | upH      | 9,08  | 7,72  | 7,98  | 7,94    | 8,05  | 8,09  | 8,2     |       |       |       |       |       |       | e/ 6-9 |
| Temperatura                 | ōС       | 24,6  | 21,4  | 18,3  | 19      | 19,8  | 11,7  | 12,4    |       |       |       |       |       |       | <35    |
| Oxígeno Disuelto            | mg/l     | 4,4   | 4,8   | 4,2   | 4,5     | 2,6   | 3,6   | 6,4     |       |       |       |       |       |       | >2     |
| Conductividad               | uS/cm    | 1125  | 1175  | 1215  | 1215    | 1380  | 1010  | 1170    |       |       |       |       |       |       | -      |
| RTE (105 ºC)                | mg/dm    | 670   | 770   | 760   | 760     | 855   | 635   | 730     |       |       |       |       |       |       | -      |
| Sol. Sed. 10 min.           | cm3/dcm3 | 0,8   | 1,8   | 3,5   | Ausente | 0,3   | 0,1   | Ausente |       |       |       |       |       |       | -      |
| Sol. Sed. 2 hs.             | cm3/dcm3 | 1     | 1,8   | 4     | 4       | 0,3   | 0,3   | Ausente |       |       |       |       |       |       | -      |
| Alcalinidad Total           | mg/dm3   | 520   | 496   | 436   | 540     | 480   | 496   | 544     |       |       |       |       |       |       | -      |
| Alcalinidad de Carbonatos   | mg/dm3   | 48    | 0     | 0     | 0       | 0     | 0     | 0       |       |       |       |       |       |       | -      |
| Alcalinidad de Bicarbonatos | mg/dm3   | 472   | 496   | 436   | 40      | 480   | 496   | 544     |       |       |       |       |       |       | -      |
| Cloruros                    | mg/dm3   | 30    | 66    | 88    | 31      | 67    | 58    | 34      |       |       |       |       |       |       | -      |
| Sodio                       | mg/dm3   | 204   | 250   | 265   | 255     | 250   | 240   | 215     |       |       |       |       |       |       | -      |
| Nitrógeno Total Kjeldahl    | mg/dm3   | 8     | 13    | 4,5   | 2       | 13    | 13,3  | 15      |       |       |       |       |       |       | -      |
| Nitrógeno de Amoniaco       | mg/dm3   | 6,1   | 11    | 3,1   | 1,8     | 11    | 12    | 13      |       |       |       |       |       |       | -      |
| Nitrógeno Orgánico          | mg/dm3   | 1,9   | 2     | 1,4   | 0       | 2     | 1,3   | 2       |       |       |       |       |       |       | -      |
| DBO                         | mg/l     | 3     | 7     | 8     | 2       | 3     | 10    | 3       |       |       |       |       |       |       | <15    |
| DQO                         | mg/l     | 62    | 77    | 87    | 25      | 44    | 62    | 39      |       |       |       |       |       |       | -      |
| SSEE                        | mg/dm3   | 10    | <10   | 14    | <10     | 12    | 14    | <10     |       |       |       |       |       |       | -      |

| SAAM                 | mg/dm3 | <0,20 | <0,20 | <0,20 | <0,20 | <0,20 | <0,20 | <0,20 |  |  |  | <5     |
|----------------------|--------|-------|-------|-------|-------|-------|-------|-------|--|--|--|--------|
| Sulfuros             | ug/l   | <100  | <100  | <100  | <100  | <100  | <100  | <100  |  |  |  | <0,1   |
| Zinc                 | ug/l   | <100  | <100  | <100  | <100  | <100  | <100  | <100  |  |  |  | -      |
| Cobre                | ug/l   | <10   | <10   | <10   | <10   | <10   | <10   | <10   |  |  |  | -      |
| Plomo                | ug/l   | <20   | <20   | <20   | <20   | <20   | <20   | <20   |  |  |  | -      |
| Cromo Total          | ug/l   | <50   | <50   | <50   | <50   | <50   | <50   | <50   |  |  |  | -      |
| Fosforo Total        | ug/l   | 2930  | 2400  | 730   | 1200  | 1100  | 330   | 2700  |  |  |  | <5000  |
| Sustancias Fenolicas | ug/l   | 0,06  | <50   | <50   | <50   | 100   | <50   | <50   |  |  |  | <1000  |
| Cianuro Total        | ug/l   | <30   | <30   | <30   | <30   | <30   | <30   | <30   |  |  |  | <100   |
| Hidrocarburos        | ug/l   | <1000 | <1000 | <1000 | <1000 | 1000  | <1000 | <1000 |  |  |  | <10000 |

|                             |          |       |       |         | Aº Del  | Rey y Pte. Or | tiz     |         |       |       |       |       |       |       |        |
|-----------------------------|----------|-------|-------|---------|---------|---------------|---------|---------|-------|-------|-------|-------|-------|-------|--------|
| AÑO                         | -        |       |       |         |         |               | 20      | 15      |       |       |       |       |       | VALOR | ACUMAR |
| MES                         | -        | 01/15 | 02/15 | 03/15   | 04/15   | 05/15         | 06/15   | 07/15   | 08/15 | 09/15 | 10/15 | 11/15 | 12/15 | MEDIO | USO IV |
| Parametros                  | Unidad   | Valor | Valor | Valor   | Valor   | Valor         | Valor   | Valor   | Valor | Valor | Valor | Valor | Valor |       |        |
| рН                          | upH      | 8,87  | 7,81  | 7,85    | 8,02    | 8,04          | 8,17    | 7,89    |       |       |       |       |       |       | e/ 6-9 |
| Temperatura                 | ōC       | 26,6  | 22,8  | 19      | 19,8    | 20,7          | 12,2    | 12,7    |       |       |       |       |       |       | <35    |
| Oxígeno Disuelto            | mg/l     | 4,1   | 0,6   | 2,6     | 3,3     | 2,1           | 1,6     | 4,6     |       |       |       |       |       |       | >2     |
| Conductividad               | uS/cm    | 1090  | 1280  | 1055    | 1130    | 1280          | 1060    | 1140    |       |       |       |       |       |       | -      |
| RTE (105 ºC)                | mg/dm    | 630   | 820   | 650     | 700     | 790           | 670     | 720     |       |       |       |       |       |       | -      |
| Sol. Sed. 10 min.           | cm3/dcm3 | 0,2   | 0,1   | Ausente | Ausente | 0,1           | Ausente | Ausente |       |       |       |       |       |       | -      |
| Sol. Sed. 2 hs.             | cm3/dcm3 | 0,4   | 0,1   | Ausente | Ausente | 0,1           | Ausente | Ausente |       |       |       |       |       |       | -      |
| Alcalinidad Total           | mg/dm3   | 482   | 488   | 452     | 500     | 470           | 516     | 512     |       |       |       |       |       |       | -      |
| Alcalinidad de Carbonatos   | mg/dm3   | 24    | 0     | 0       | 0       | 0             | 0       | 0       |       |       |       |       |       |       | -      |
| Alcalinidad de Bicarbonatos | mg/dm3   | 458   | 488   | 452     | 500     | 470           | 516     | 512     |       |       |       |       |       |       | -      |
| Cloruros                    | mg/dm3   | 44    | 72    | 64      | 44      | 61            | 66      | 43      |       |       |       |       |       |       | -      |
| Sodio                       | mg/dm3   | 190   | 255   | 215     | 240     | 250           | 260     | 200     |       |       |       |       |       |       | -      |
| Nitrógeno Total Kjeldahl    | mg/dm3   | 8,5   | 15    | 9,2     | 15      | 12,7          | 13      | 15      |       |       |       |       |       |       | -      |
| Nitrógeno de Amoniaco       | mg/dm3   | 6,8   | 13    | 8       | 13      | 11            | 12      | 12      |       |       |       |       |       |       | -      |
| Nitrógeno Orgánico          | mg/dm3   | 1,7   | 2     | 1,2     | 2       | 1,7           | 1       | 3       |       |       |       |       |       |       | -      |
| DBO                         | mg/l     | <2    | 5     | 4       | 2       | 3             | 8       | 4       |       |       |       |       |       |       | <15    |
| DQO                         | mg/l     | 38    | 70    | 50      | 21      | 35            | 51      | 45      |       |       |       |       |       |       | -      |
| SSEE                        | mg/dm3   | <10   | <10   | 10      | <10     | 10            | <10     | 10      |       |       |       |       |       |       | -      |
| SAAM                        | mg/dm3   | <0,20 | <0,20 | <0,20   | <0,20   | 0,44          | <0,20   | 1,3     |       |       |       |       |       |       | <5     |
| Sulfuros                    | ug/l     | <100  | <100  | <100    | <100    | <100          | <100    | <100    |       |       |       |       |       |       | <0,1   |
| Zinc                        | ug/l     | <100  | <100  | <100    | <100    | <100          | <100    | <100    |       |       |       |       |       |       | -      |
| Cobre                       | ug/l     | <10   | <10   | <10     | <10     | <10           | <10     | <10     |       |       |       |       |       |       | -      |
| Plomo                       | ug/l     | <20   | 20    | <20     | <20     | <20           | <20     | <20     |       |       |       |       |       |       | -      |
| Cromo Total                 | ug/l     | <50   | <50   | <50     | <50     | <50           | <50     | <50     |       |       |       |       |       |       | -      |
| Fosforo Total               | ug/l     | 1600  | 2400  | 990     | 1800    | 1700          | 2700    | 2900    |       |       |       |       |       |       | <5000  |
| Sustancias Fenolicas        | ug/l     | <50   | <50   | <50     | <50     | 80            | <50     | <50     |       |       |       |       |       |       | <1000  |
| Cianuro Total               | ug/l     | <30   | <30   | <30     | <30     | <30           | <30     | <30     |       |       |       |       |       |       | <100   |
| Hidrocarburos               | ug/l     | <1000 | 2000  | <1000   | <1000   | <1000         | <1000   | 1000    |       |       |       |       |       |       | <10000 |

| Aº Del Rey y Ruta 4 |            |       |       |         |         |       |         |         |       |       |       |       |       |       |        |
|---------------------|------------|-------|-------|---------|---------|-------|---------|---------|-------|-------|-------|-------|-------|-------|--------|
| AÑO                 | AÑO - 2015 |       |       |         |         |       |         |         |       |       |       |       |       |       |        |
| MES                 | -          | 01/15 | 02/15 | 03/15   | 04/15   | 05/15 | 06/15   | 07/15   | 08/15 | 09/15 | 10/15 | 11/15 | 12/15 | MEDIO | USO    |
| Parametros          | Unidad     | Valor | Valor | Valor   | Valor   | Valor | Valor   | Valor   | Valor | Valor | Valor | Valor | Valor |       |        |
| рН                  | upH        | 9,53  | 7,64  | 8,22    | 9,59    | 7,99  | 8,19    | 8,8     |       |       |       |       |       |       | e/ 6-9 |
| Temperatura         | ōC         | 26,6  | 23,4  | 19,1    | 20      | 17,3  | 11,1    | 11,8    |       |       |       |       |       |       | <35    |
| Oxígeno Disuelto    | mg/l       | 2,4   | 3     | 3       | 2,3     | 3     | 3,1     | 5,1     |       |       |       |       |       |       | >2     |
| Conductividad       | uS/cm      | 1395  | 1660  | 1110    | 1440    | 1260  | 1100    | 1265    |       |       |       |       |       |       | -      |
| RTE (105 ºC)        | mg/dm      | 820   | 1080  | 695     | 905     | 780   | 700     | 805     |       |       |       |       |       |       | -      |
| Sol. Sed. 10 min.   | cm3/dcm3   | 0,4   | 0,4   | Ausente | Ausente | 0,3   | Ausente | Ausente |       |       |       |       |       |       | -      |
| Sol. Sed. 2 hs.     | cm3/dcm3   | 0,5   | 0,7   | Ausente | Ausente | 0,4   | 0,3     | 0,5     |       |       |       |       |       |       | -      |

mg/l

| Alcalinidad Total           | mg/dm3 | 564  | 432  | 448   | 640   | 485   | 520   | 514  |  |  |  | -      |
|-----------------------------|--------|------|------|-------|-------|-------|-------|------|--|--|--|--------|
| Alcalinidad de Carbonatos   | mg/dm3 | 56   | 0    | 0     | 328   | 0     | 0     | 12   |  |  |  | -      |
| Alcalinidad de Bicarbonatos | mg/dm3 | 508  | 432  | 448   | 312   | 485   | 520   | 502  |  |  |  | -      |
| Cloruros                    | mg/dm3 | 88   | 170  | 76    | 73    | 76    | 76    | 55   |  |  |  | -      |
| Sodio                       | mg/dm3 | 290  | 305  | 230   | 230   | 280   | 320   | 225  |  |  |  | -      |
| Nitrógeno Total Kjeldahl    | mg/dm3 | 18   | 23   | 7,2   | 27    | 14,4  | 14,1  | 20   |  |  |  | -      |
| Nitrógeno de Amoniaco       | mg/dm3 | 15   | 18   | 5,8   | 24    | 12    | 12    | 14   |  |  |  | -      |
| Nitrógeno Orgánico          | mg/dm3 | 3    | 5    | 1,4   | 3     | 2,4   | 2,1   | 6    |  |  |  | -      |
| DBO                         | mg/l   | 5    | 20   | 4     | 3     | 2     | 18    | 8    |  |  |  | <15    |
| DQO                         | mg/l   | 61   | 105  | 56    | 39    | 34    | 58    | 71   |  |  |  | -      |
| SSEE                        | mg/dm3 | 10   | 22   | 10    | 10    | 12    | 10    | 14   |  |  |  | -      |
| SAAM                        | mg/dm3 | 0,47 | 0,29 | <0,20 | <0,20 | 0,28  | <0,20 | 0,36 |  |  |  | <5     |
| Sulfuros                    | ug/l   | <100 | <100 | <10   | <100  | <100  | <100  | <100 |  |  |  | <0,1   |
| Zinc                        | ug/l   | 160  | 90   | 170   | 60    | <100  | <100  | <100 |  |  |  | -      |
| Cobre                       | ug/l   | <10  | 30   | <10   | <10   | <10   | <10   | <10  |  |  |  | -      |
| Plomo                       | ug/l   | <20  | 50   | 20    | 20    | <20   | 40    | 20   |  |  |  | -      |
| Cromo Total                 | ug/l   | <50  | <50  | <50   | <50   | <50   | <50   | <50  |  |  |  | -      |
| Fosforo Total               | ug/l   | 4230 | 2600 | 2000  | 3000  | 3500  | 7900  | 3000 |  |  |  | <5000  |
| Sustancias Fenolicas        | ug/l   | 100  | <50  | <50   | 130   | 100   | <50   | <50  |  |  |  | <1000  |
| Cianuro Total               | ug/l   | 190  | <30  | <30   | <30   | <30   | <30   | <30  |  |  |  | <100   |
| Hidrocarburos               | ug/l   | 4000 | 5000 | 2000  | 1000  | <1000 | 4000  | 2000 |  |  |  | <10000 |

| Aº Diomede y Bs. As.        |          |       |         |         |         |         |       |         |       |       |       |       |       |       |        |
|-----------------------------|----------|-------|---------|---------|---------|---------|-------|---------|-------|-------|-------|-------|-------|-------|--------|
| AÑO                         | -        |       |         |         |         |         | 20    | 15      |       |       |       |       |       | VALOR | ACUMAR |
| MES                         | -        | 01/15 | 02/15   | 03/15   | 04/15   | 05/15   | 06/15 | 07/15   | 08/15 | 09/15 | 10/15 | 11/15 | 12/15 | MEDIO | USO    |
| Parametros                  | Unidad   | Valor | Valor   | Valor   | Valor   | Valor   | Valor | Valor   | Valor | Valor | Valor | Valor | Valor |       |        |
| рН                          | upH      | 8,66  | 7,81    | 7,84    | 7,78    | 7,98    | 7,84  | 7,89    |       |       |       |       |       |       | e/ 6-9 |
| Temperatura                 | ōC       | 23,8  | 21,3    | 17,3    | 19,2    | 18,8    | 15,1  | 16      |       |       |       |       |       |       | <35    |
| Oxígeno Disuelto            | mg/l     | 2,2   | 3,6     | 1,7     | 3,2     | 1,4     | 1,1   | 4,5     |       |       |       |       |       |       | >2     |
| Conductividad               | uS/cm    | 1010  | 960     | 960     | 952     | 930     | 830   | 965     |       |       |       |       |       |       | -      |
| RTE (105 ºC)                | mg/dm    | 580   | 590     | 580     | 570     | 560     | 505   | 585     |       |       |       |       |       |       | -      |
| Sol. Sed. 10 min.           | cm3/dcm3 | 0,2   | Ausente | Ausente | Ausente | Ausente | 4     | Ausente |       |       |       |       |       |       | -      |
| Sol. Sed. 2 hs.             | cm3/dcm3 | 0,2   | Ausente | Ausente | Ausente | Ausente | 4,1   | 0,5     |       |       |       |       |       |       | -      |
| Alcalinidad Total           | mg/dm3   | 440   | 428     | 420     | 400     | 420     | 424   | 406     |       |       |       |       |       |       | -      |
| Alcalinidad de Carbonatos   | mg/dm3   | 16    | 0       | 0       | 0       | 0       | 0     | 0       |       |       |       |       |       |       | -      |
| Alcalinidad de Bicarbonatos | mg/dm3   | 424   | 428     | 420     | 400     | 420     | 424   | 406     |       |       |       |       |       |       | -      |
| Cloruros                    | mg/dm3   | 51    | 50      | 52      | 34      | 41      | 38    | 39      |       |       |       |       |       |       | -      |
| Sodio                       | mg/dm3   | 188   | 215     | 200     | 200     | 235     | 210   | 180     |       |       |       |       |       |       | -      |
| Nitrógeno Total Kjeldahl    | mg/dm3   | 5,4   | 1,1     | 4,9     | 0,44    | 2,5     | 7,9   | 2       |       |       |       |       |       |       | -      |
| Nitrógeno de Amoniaco       | mg/dm3   | 4,3   | 0,75    | 4,4     | 0,39    | 2       | 5     | 1,6     |       |       |       |       |       |       | -      |
| Nitrógeno Orgánico          | mg/dm3   | 1,1   | 0,35    | 0,5     | 0       | 0,5     | 2,9   | 0,4     |       |       |       |       |       |       | -      |
| DBO                         | mg/l     | <2    | <2      | 2       | <2      | <2      | 17    | <2      |       |       |       |       |       |       | <15    |
| DQO                         | mg/l     | 20    | 2       | 35      | 13      | 15      | 88    | 21      |       |       |       |       |       |       | -      |
| SSEE                        | mg/dm3   | <10   | <10     | <10     | <10     | <10     | 14    | <10     |       |       |       |       |       |       | -      |
| SAAM                        | mg/dm3   | <0,20 | <0,20   | <0,20   | <0,20   | 0,23    | <0,20 | <0,20   |       |       |       |       |       |       | <5     |
| Sulfuros                    | ug/l     | <100  | <100    | <100    | <100    | <100    | <100  | <100    |       |       |       |       |       |       | <0,1   |
| Zinc                        | ug/l     | <100  | <100    | <100    | <100    | <100    | <100  | <100    |       |       |       |       |       |       | -      |
| Cobre                       | ug/l     | <10   | <10     | <10     | <10     | <10     | <10   | <10     |       |       |       |       |       |       | -      |
| Plomo                       | ug/l     | <20   | <20     | <20     | <20     | <20     | 20    | <20     |       |       |       |       |       |       | -      |
| Cromo Total                 | ug/l     | <50   | <50     | <50     | <50     | <50     | <50   | <50     |       |       |       |       |       |       | -      |
| Fosforo Total               | ug/l     | 2830  | 1100    | 1100    | 780     | 720     | 2100  | 910     |       |       |       |       |       |       | <5000  |
| Sustancias Fenolicas        | ug/l     | 80    | <50     | <50     | <50     | <50     | 80    | <50     |       |       |       |       |       |       | <1000  |
| Cianuro Total               | ug/l     | <30   | <30     | <30     | <30     | <30     | <30   | <30     |       |       |       |       |       |       | <100   |
| Hidrocarburos               | ug/l     | <1000 | <1000   | <1000   | <1000   | <1000   | 2000  | <1000   |       |       |       |       |       |       | <10000 |

| Aº del Rey y Capitan Moyano |          |       |       |         |         |       |       |         |       |       |       |       |       |       |        |
|-----------------------------|----------|-------|-------|---------|---------|-------|-------|---------|-------|-------|-------|-------|-------|-------|--------|
| AÑO                         | -        |       |       |         |         |       | 20    | 15      |       |       |       |       |       | VALOR | ACUMAR |
| MES                         | -        | 01/15 | 02/15 | 03/15   | 04/15   | 05/15 | 06/15 | 07/15   | 08/15 | 09/15 | 10/15 | 11/15 | 12/15 | MEDIO | USO    |
| Parametros                  | Unidad   | Valor | Valor | Valor   | Valor   | Valor | Valor | Valor   | Valor | Valor | Valor | Valor | Valor |       |        |
| рН                          | upH      | 8,71  | 8,2   | 8,12    | 8,07    | 8,2   | 8,01  | 8       |       |       |       |       |       |       | e/ 6-9 |
| Temperatura                 | ōC       | 26,6  | 23    | 17,8    | 19,4    | 19,9  | 10,8  | 11,7    |       |       |       |       |       |       | <35    |
| Oxígeno Disuelto            | mg/l     | 5,7   | 1,1   | 4       | 4,6     | 2,5   | 2,3   | 3,8     |       |       |       |       |       |       | >2     |
| Conductividad               | uS/cm    | 1050  | 1090  | 1020    | 1055    | 1060  | 870   | 1050    |       |       |       |       |       |       | -      |
| RTE (105 ºC)                | mg/dm    | 600   | 670   | 625     | 665     | 650   | 525   | 650     |       |       |       |       |       |       | -      |
| Sol. Sed. 10 min.           | cm3/dcm3 | 0,5   | 0,2   | Ausente | Ausente | 0,1   | 1,5   | Ausente |       |       |       |       |       |       | -      |
| Sol. Sed. 2 hs.             | cm3/dcm3 | 1     | 0,3   | Ausente | Ausente | 0,2   | 1,5   | Ausente |       |       |       |       |       |       | -      |
| Alcalinidad Total           | mg/dm3   | 456   | 480   | 412     | 452     | 440   | 456   | 460     |       |       |       |       |       |       | -      |
| Alcalinidad de Carbonatos   | mg/dm3   | 16    | 0     | 0       | 0       | 0     | 0     | 0       |       |       |       |       |       |       | -      |
| Alcalinidad de Bicarbonatos | mg/dm3   | 440   | 480   | 412     | 452     | 440   | 456   | 460     |       |       |       |       |       |       | -      |
| Cloruros                    | mg/dm3   | 58    | 74    | 78      | 52      | 62    | 60    | 56      |       |       |       |       |       |       | -      |
| Sodio                       | mg/dm3   | 184   | 230   | 210     | 215     | 240   | 210   | 185     |       |       |       |       |       |       | -      |
| Nitrógeno Total Kjeldahl    | mg/dm3   | 3,9   | 10    | 7,1     | 12      | 9,9   | 11,3  | 14      |       |       |       |       |       |       | -      |
| Nitrógeno de Amoniaco       | mg/dm3   | 2,8   | 6,9   | 6,5     | 10      | 8,6   | 9     | 11      |       |       |       |       |       |       | -      |
| Nitrógeno Orgánico          | mg/dm3   | 1,1   | 3,1   | 0,6     | 2       | 1,3   | 2,3   | 3       |       |       |       |       |       |       | -      |
| DBO                         | mg/l     | <2    | 5     | 2       | 2       | 2     | 17    | 4       |       |       |       |       |       |       | <15    |
| DQO                         | mg/l     | 36    | 52    | 44      | 28      | 38    | 64    | 47      |       |       |       |       |       |       | -      |
| SSEE                        | mg/dm3   | <10   | <10   | <10     | <10     | 12    | 12    | <10     |       |       |       |       |       |       | -      |
| SAAM                        | mg/dm3   | <0,20 | 0,34  | <0,20   | <0,20   | <0,20 | <0,20 | 0,54    |       |       |       |       |       |       | <5     |
| Sulfuros                    | ug/l     | <100  | <100  | <100    | <100    | <100  | <100  | <100    |       |       |       |       |       |       | <0,1   |
| Zinc                        | mg/l     | 60    | <100  | <100    | <100    | 70    | <100  | <100    |       |       |       |       |       |       | -      |
| Cobre                       | ug/l     | <10   | 20    | <10     | <10     | <10   | <10   | <10     |       |       |       |       |       |       | -      |
| Plomo                       | ug/l     | <20   | 40    | <20     | <20     | <20   | 20    | <20     |       |       |       |       |       |       | -      |
| Cromo Total                 | ug/l     | <50   | <50   | <50     | <50     | <50   | <50   | <50     |       |       |       |       |       |       | -      |
| Fosforo Total               | ug/l     | 2060  | 1100  | 1100    | 2000    | 390   | 2000  | 1700    |       |       |       |       |       |       | <5000  |
| Sustancias Fenolicas        | ug/l     | 50    | <50   | <50     | 200     | 50    | 60    | <50     |       |       |       |       |       |       | <1000  |
| Cianuro Total               | ug/l     | <30   | <30   | <30     | <30     | <30   | <30   | <30     |       |       |       |       |       |       | <100   |
| Hidrocarburos               | ug/l     | <1000 | <1000 | <1000   | <1000   | <1000 | 2000  | <1000   |       |       |       |       |       |       | <10000 |



ANEXO IV. RED DE POZOS DE MONITOREO DE AGUA SUBTERRÁNEA ACUMAR. CAMPAÑA FEBRERO/MARZO 2015.

|                | A              | CUMAR - RED                                   | DE MONIT                               | OREO DE                                | AGUA SUBTER                     | RANEA - Campaña verano (febrero/marzo) de 2015                                                                                                                                                                                        |
|----------------|----------------|-----------------------------------------------|----------------------------------------|----------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sitio          | Pozos          | Nombre                                        | Latitud                                | Longitud                               | Partido                         | Localización                                                                                                                                                                                                                          |
| 1              | 1              | ACUMAR-001F                                   | -35.078139                             | -58.600333                             | Cañuelas                        | Ruta 6 – Ex Obrador Decavial                                                                                                                                                                                                          |
| 2              | 3              | ACUMAR-001P<br>ACUMAR-002F                    | -35.074139                             | -58.862000                             | Cañuelas                        | A 25 de la ruta 6 por la entrada al ex obrador Decavial Por ruta 6 desde Cañuelas a 16 km sobre mano izquierda Ruta 205 km 75,5 - Paraje El Taladro                                                                                   |
|                |                | ACUMAR-002P                                   | -00.074100                             | -50.002000                             |                                 | En estrada al paraje El Taladro. En esquina frente a una casa familiar y negocio                                                                                                                                                      |
| 3              | 5<br>6         | ACUMAR-003F<br>ACUMAR-003P                    | -34.943333                             | -59.031389                             | General Las Heras               | Ruta 40 km 73<br>Dentro del terreno de una chacra, pasando la tranquera. A 20 metros de la ruta.                                                                                                                                      |
| 4              | 7              | ACUMAR-004F<br>ACUMAR-004P                    | -34.807028                             | -58.936528                             | Marcos Paz                      | De Las Heras a unos 7,5 km por ruta 40 sobre mano derecha Ruta 6 – Estancia Los Sauces A unos 35 metros de la Ruta 6 carril hacia Cañuelas                                                                                            |
| 5              | 9              | ACUMAR-005F                                   | -34.665722                             | -58.514056                             | La Matanza                      | En entrada a estancia a la derecha, cerca del alambrado perimetral.  Pagola y General Paz                                                                                                                                             |
|                | 10             | ACUMAR-005P                                   |                                        |                                        |                                 | A unos 2 m. de la ex av. Gral Paz y 28 m. de la actual avenida.<br>Esquina de Págola y ex Gral Paz hacia Riachuelo a mano izquierda                                                                                                   |
| 6              | 11<br>12       | ACUMAR-006F<br>ACUMAR-006P                    | -34.653778                             | -58.352944                             | Avellaneda                      | Bajada Autopista - Dock Sud A 2 metros de la calle de salida de la autopista hacia La Plata Debajo del puente de la autopista Buenos Aires-La Plata en salida Dock Sud.                                                               |
| 7              | 13<br>14       | ACUMAR-007F<br>ACUMAR-007P                    | -34.748250                             | -58.395778                             | Lomas de Zamora                 | Vergara y Medrano - Estación Banfield<br>A 1,5 m hacia el cerco del FFCC y 9 m de Medrano en dirección Sur.                                                                                                                           |
| 8              | 15<br>16       | ACUMAR-008F<br>ACUMAR-008P                    | -34.850778                             | -58.387917                             | Almirante Brown                 | Sobre Vergara entre cerco de ferrocarril y vereda.  Horacio Ascasubi y Gob. Ávila A 1 metro de Ascasubi y a 4 de la calle Gob. Avila.                                                                                                 |
| 9              | 17<br>18       | ACUMAR-009F<br>ACUMAR-009P                    | -34.928833                             | -58.491639                             | San Vicente                     | Esquina, frente a una casa de familia y a 10 m del cerco de FFCC.  Ruta 58 - Canning - Barrio La Magdalena A 7 m de la calle y a 40 m de la ruta 58, pozos alineados sobre esta ruta.                                                 |
| 10             | 19             | ACUMAR-010F                                   | -34.780111                             | -58.825250                             | Marcos Paz                      | En esquina de un barrio cerrado próximo a un canal de drenaje.  La Rioja y Viena                                                                                                                                                      |
| 11             | 20             | ACUMAR-010P<br>ACUMAR-011F                    | -34.885500                             | -58.852861                             | General Las Heras               | A unos 3 m de calle Viena.  Detrás de un establecimiento educativo.  Ruta 6 – Estancia Santa Ana                                                                                                                                      |
|                | 22             | ACUMAR-011P                                   |                                        |                                        |                                 | A 20 m de la Ruta 6 a la derecha de la tranquera de entrada<br>Por Ruta 6 a 18,5 km de la rotonda de la ruta 3 mano a Campana.                                                                                                        |
| 12             | 23<br>24       | ACUMAR-012F<br>ACUMAR-012P                    | -34.993056                             | -58.748500                             | Cañuelas                        | Ruta 3 - Est. M'isijos<br>A 10 m de la ruta (sector ensachado)<br>En la entrada de la estancia M'isijos a mano izquierda de la tranquera                                                                                              |
| 13             | 25<br>26       | ACUMAR-013F<br>ACUMAR-013P                    | -34.902333                             | -58.696917                             | La Matanza                      | Ruta 3 y Calle San Carlos<br>A 2,5 m de San Carlos y a 48 de la Ruta 3.                                                                                                                                                               |
| 14             | 27<br>28       | ACUMAR-014F<br>ACUMAR-014P                    | -34.767611                             | -58.618028                             | La Matanza                      | En plazoleta, bajando de ruta 3 por San Carlos a mano izquierda.  Ruta 3, km 30 A 3 m Prov. Unidas (R3) y 60 m calle Azul                                                                                                             |
| 15             | 29             | ACUMAR-015F                                   | -34.823417                             | -58.511139                             | Ezeiza                          | Ruta 3 Km 30. Venta automotores sobre R3 a 210 m de Apipé y 60m de Azul.<br>Av. V. Fair y Au. Ezeiza - Cañuelas (rotonda - Escuela Penitenciaría)                                                                                     |
| - 10           |                | ACUMAR-015P                                   | 05.00000                               | 50.11000                               |                                 | A menos de 1 m del cordón de la rotonda. Frente entrada penitenciaría a 10 m en rotonda.                                                                                                                                              |
| 16             | 31             | ACUMAR-016P<br>ACUMAR-016F                    | -35,039892<br>-34,846371               | -58,41996<br>-58,654535                | San Vicente Virrey del Pino, La | Libertad y Colombres - Pueblo de la Paz  Dentro de un predio de ABSA - solicitar permiso de ingreso pervio  Av. Brig. Gral. Juan Manuel de Rosas (colectora Ruta 3) a 30m al Sur de la calle Aroma                                    |
| 18             |                | ACUMAR-017F                                   | -35.074639                             | -58.690528                             | Matanza<br>Cañuelas             | del Barrio Santa Amelia, Virrey del Pino, La Matanza.<br>Ruta 6 a 7km de Cañuelas                                                                                                                                                     |
| 19             | 35             | ACUMAR-017P<br>ACUMAR-018F                    | -34.988472                             | -58.792139                             | Cañuelas                        | A 50 m de la ruta 6 a la derecha de la entrada el campo.  Ruta 6 hacia La Plata a 7 Km de Cañuelas sobre la izquierda.  Ruta 6 - Estancia El Tero                                                                                     |
|                | 36             | ACUMAR-018P                                   | 0.1.000770                             | 50 000100                              |                                 | A 19 m de la ruta 6 y próximo al alambrado de la estancia a la derecha de la tranquera.  Sobre ruta 6 a 5,5 km del cruce de la ruta 3.                                                                                                |
| 20             | 37<br>38       | ACUMAR-019P<br>ACUMAR-019P                    | -34.906778                             | -58.929139                             | General Las Heras               | Ruta 40<br>A unos 11 m de la ruta 40, de tierra a la derecha de la tranquera<br>Por ex ruta 40 a 2,5 km al Norte de la cuidad de Las Heras.                                                                                           |
| 21             | 39<br>40       | ACUMAR-020F<br>ACUMAR-020P                    | -34.829000                             | -58.774083                             | Marcos Paz                      | calle Dagnillo a 200 mts Aº Morales<br>A 5 m del camino, hacia el alambrado a la derecha de la entrada.                                                                                                                               |
| 22             | 41<br>42       | ACUMAR-021F<br>ACUMAR-021P                    | -34.759750                             | -58.679833                             | Merlo                           | Por camino de tierra luego de pasar el Aº Morales hacia E-NE a 210 m sobre la derecha.  Alsina 1521  A 5 m de la calle, en sector trasero del la unidad (oeste)                                                                       |
| 23             | 43             | ACUMAR-022F                                   | -34.979667                             | -58.549361                             | San Vicente                     | Próximo al terreno ocupado por la unidad y un baldío.  Estancia La Luz María. Antigua R52                                                                                                                                             |
| 24             | 44             | ACUMAR-022P<br>ACUMAR-023F                    | -34.930556                             | -58.646528                             | Cañuelas                        | A 4 m del camino vecinal rumbo NW y unos 12 m de ruta 52 (Castex) Pozo 22P se encuentra sobre ruta 52.  Autopista Ezeiza-Cañuelas km 49,5                                                                                             |
|                | 46             | ACUMAR-023F                                   |                                        |                                        |                                 | A 2 m de camino lateral de autopista, próximo a alambrado<br>Autopista Ezeiza-Cañuelas km 49 ½ al costado. Próximo al cartel indicador de km y                                                                                        |
| 25             | 47<br>48       | ACUMAR-024F<br>ACUMAR-024P                    | -34.865750                             | -58.573278                             | Ezeiza                          | señalización. Autopista Ezeiza-Cañuelas km 39,5 A 10 m de la calle lateral de autopista y a 37 de la autopista                                                                                                                        |
| 26             | 49<br>50       | ACUMAR-025F                                   | -34.907361                             | -58.434667                             | Presidente Perón                | Autopista Ezeiza-Cañuelas km 39 ½ dentro de una arboleda.  Ex Ruta 16. La Lata                                                                                                                                                        |
| 27             | 51             | ACUMAR-025P<br>ACUMAR-026F                    | -34,712263                             | -58,591377                             | Isidro Casanova, La<br>Matanza  | A 5 km al Norte de la ruta 58 Av Brigadier General Rosas 7979, Isidro Casanova, La Matanza.                                                                                                                                           |
| 28             | 52<br>53       | ACUMAR-027F<br>ACUMAR-027P                    | -34.737056                             | -58.520083                             | Cuidad Evita, La Matanza        | Autopista Richieri y Gendarmería<br>A 40 m autopista Richieri y 12 m del alambrado de Gendarmería.<br>Autopista Richieri, frente a Gendarmería y Sp. Italiano.                                                                        |
| 29             | 54<br>55       | ACUMAR-028F<br>ACUMAR-028P                    | -34.794250                             | -58.447972                             | Esteban Echeverria              | Ruta Tradición y Calle Rettes En vereda de un taller de reparación de camiones.                                                                                                                                                       |
| 30             | 56<br>57       | ACUMAR-029F<br>ACUMAR-029P                    | -34.683056                             | -58.427417                             | Lanús                           | A 1,5 m de Rettes, a 24 m de Camino de Cintura y 20 de c Ruta de la Tradición.  Itapirú y Emilio Castro A 1,5 de calle Tapirú. En vereda de Tapirú y Emilio Castro.                                                                   |
| 31             | 58<br>59       | ACUMAR-030F                                   | -35.002139                             | -58.999528                             | General Las Heras               | Estación Speratti - Escuela Nº 5 B. Rivadavia.                                                                                                                                                                                        |
| 32             | 59<br>60       | ACUMAR-030P                                   | -35.002142                             | -58.999531                             | Avellaneda                      | A unos 15 m de la calle próximo al alambre perimetral del establecimiento.  Frente a estación Speratti al este de la entrada de la escuela.  Morse y colectora autopista BsAs-La Plata. Arenera Dock Sud. Solicitar ingreso al predio |
| 33             | 61             | ACUMAR-032F                                   | -34,854450                             | -58,677450                             | La Matanza                      | Ciudadela 8146 entre Querandies y Fragueiro. Detrás de la planta de osmosis inversa de<br>AySA- Virrey del Pino                                                                                                                       |
| 34             | 62<br>63<br>64 | ACUMAR-032P<br>ACUMAR-033F<br>ACUMAR-033P     | -34,658511                             | -58,380775                             | Avellaneda                      | A mano derecha de la entrada del Stud Shei-Max Club Regatas Avellaneda                                                                                                                                                                |
| 35             | 65             | ACUMAR-034F                                   | -34,822117                             | -58,502883                             | E. Echeverría E. Echeverría     | Las cinas-cinas y Julio A. Roca, Barrio San Ignacio  La Rioja y Arroyo Ortega, Barrio San Ignacio                                                                                                                                     |
| 36<br>37       | 66<br>67       | ACUMAR-034P  ACUMAR-035F                      | -34,81485<br>-34,794865                | -58,499738<br>-58,656225               | Virrey del Pino, La             | Cabot y calle s/n a 1,3 km de calle Chivilcoy, en tanque de agua del barrio Nicole.                                                                                                                                                   |
| 38             | 68<br>69       | ACUMAR-035P<br>ACUMAR-036F                    | -34,911306                             | -58,735611                             | Matanza  Marcos Paz             | Acceso al penal de Marcos Paz a 1750 m de Ruta 3 y Puente sobre Rio Matanza. En el                                                                                                                                                    |
| 39             | 70<br>71<br>72 | ACUMAR-036P<br>ACUMAR-037F<br>ACUMAR-037P     | -34.704.575                            |                                        | Puente La Noria, CABA           | interior de finca Sobre frente de Policia Federal Argentina, próximo a puente mano a CABA.                                                                                                                                            |
| 40<br>41       | 73<br>74       | AySA -LM740<br>AySA-LM5145                    | -34,666614<br>-34,780910               | -58,536638<br>-58,620117               | La Matanza<br>La Matanza        | Av Nazca y San Martín dentro de predio de Aysa.  Murgiondo y Barilloche Bº La Justina                                                                                                                                                 |
| 42             | 75<br>76       | AySA-MO119<br>AySA-MO541                      | -34,683020                             | -58,619900                             | Morón                           | Virgilio y Cnel Arena, a 100 mts de Av. Don Bosco. En estación de servicio                                                                                                                                                            |
| 43<br>44<br>45 | 77<br>78<br>79 | AySA-EE713<br>AySA-EZ5154<br>AySA-CF721       | -34,866477<br>-34,902169<br>-34,644386 | -58,532238<br>-58,573066<br>-58,379426 | Ezeiza<br>Ezeiza<br>CABA        | Lavalle y Santa Ursula, B° La Unión Av . Argentina y Solis, Spegazzini Vieytes 1001. Constitución.                                                                                                                                    |
| 46<br>47       | 80<br>81       | GCABA-F018<br>AySA-AB715                      | -34,643889<br>-34,885482               | -58,379426<br>-58,376750<br>-58,380229 | CABA<br>CABA<br>Alte Brown      | Herrera y Quinquela Martín, Plaza Herrera  Mazzini, 33 Orientales y Lavalleja. En plaza Triangular                                                                                                                                    |
| 48             | 82<br>83<br>84 | AySA-AB577<br>AySA-LA702<br>AySA-LA523        | -34,810061<br>-34,685969               | -58,396409<br>-58,392268               | Alte Brown<br>Lanús             | Jorge 247, entre C. Pellegrini y Quintana. Dentro del predio de AySA. Adrogué Jujuy y Perón                                                                                                                                           |
| 50             |                | AySA-AV701<br>AySA-AV522                      | -34,683466                             | -58,351721                             | Avellaneda                      | Solier y Supisiche, Sarandí                                                                                                                                                                                                           |
| 51             | 87<br>88<br>89 | ACUMAR -038F<br>ACUMAR -038Fi<br>ACUMAR -038P | -34,748494                             | -58,522887                             | Ezeiza                          | Estación de monitoreo Autopista Richieri y Rio Matanza. Mano a Ezeiza, sobre la derecha                                                                                                                                               |
| 52             | 90<br>91       | ACUMAR -039F<br>ACUMAR -039P                  | -34,931657                             | -58,620322                             | Cañuelas                        | Italia y Chiclana, sobre margen del Arroyo Cañuelas, Máximo Paz                                                                                                                                                                       |
|                |                | Pozo no operativo                             |                                        |                                        |                                 |                                                                                                                                                                                                                                       |

Pozo no operativo Pozo/sitio de monitoreo nuevo



ANEXO V. AGUA SUBTERRANEA. CAMPAÑA FEBRERO/MARZO 2015.

### CALIDAD DE AGUAS SUBTERRÁNEAS DE LA CUENCA MATANZA - RIACHUELO: ACUÍFERO FREÁTICO PARAMETROS FISICO-QUIMICOS DE CAMPO Y LABORATORIO - INA CTUA - CAMPAÑAS OCT/NOV 2014- FEB/MAR 2015 PARÁMETROS FISICO-QUIMICOS Conductividad Código Temperatura **Alcalinidad Bicarbonatos** Sólidos disueltos totales Turbiedad eléctrica Oct/Nov 2014 | Feb/Mar 2015 | Oct/Nov 2014 | Feb/Mar 2015 Oct/Nov 2014 Feb/Mar 2015 Oct/Nov 2014 | Feb/Mar 2015 | Pozo mg CaCO<sub>3</sub>/I mg CaCO<sub>3</sub>/I 17,6 17,8 17,7 1658 664 707 1071 0,3 6,69 6,83 19,1 1160 780 879 691 0,3 1327 1324 637 3F 6,58 6,81 17,1 18,9 558 663 729 821 811 3,1 16 ΔF 6,82 6,98 17,2 18,7 869 697 462 465 522 475 538 466 ND 0,4 5E 6,58 6,02 23,2 21,58 1318 1149 444 475 530 516 750 738 6,9 1,8 6F 7,39 6,79 21,9 23,0 5607 7429 1215 1303 1397 1231 3000 3633 191 118 6,78 19,9 19,61 812 780 371 391 535 494 2,2 0,4 7F 7,01 333 385 8F 6.25 6.55 19,6 20.80 1174 1152 584 651 667 702 746 700 19 5,7 6,54 (\*\*\*) 18,1 (\*\*\*) 1036 (\*\*\*) 422 (\*\*\*) 460 (\*\*\*) 572 (\*\*\*) 4,5 (\*\*\*) 3.3 10F 6.82 6,79 19,3 21,41 1141 937 467 495 513 491 658 602 0,3 11F 6,72 (\*\*\*) 18,3 (\*\*\*) 2609 (\*\*\*) 1197 (\*\*\*) 1360 (\*\*\*) 1395 (\*\*\*) 1,6 (\*\*\*) 12F 7,03 (\*\*\*) 18,4 (\*\*\*) 1846 (\*\*\*) 554 (\*\*\*) 642 (\*\*\*) 1111 (\*\*\*) 46 (\*\*\*) 13F 6,92 6,66 23,5 21,93 2012 2361 432 429 528 428 1727 1,0 2,0 14F 6,26 7,88 22,4 23,60 1096 927 449 478 536 507 760 695 3,3 1,9 15F 7,05 6,37 23,4 23,59 908 502 591 588 633 651 630 13 5,2 16F 7,04 19,0 (\*) 750 399 (\*) 458 (\*) 510 (\*) 3,5 (\*) (\*) (\*) 17F 7,01 7,32 18,5 19,54 1140 1077 634 679 718 676 673 ND 2,4 707 18F 7,22 7,26 18,6 19,74 1141 846 523 846 573 585 653 607 0,1 0,1 19F 8,08 18,2 (\*\*\*) 1459 (\*\*\*) 803 (\*\*\*) 945 (\*\*\*) 995 (\*\*\*) 0,3 (\*\*\*) (\*\*\*) (\*\*\*) (\*\*\*) (\*\*\*) 20F 7,58 (\*\*\*) 21,8 1166 (\*\*\*) 593 (\*\*\*) 695 753 3,5 6,27 21F 6,46 19,1 19,17 1034 920 439 481 501 523 610 560 3,3 0,4 6,98 (\*\*) 17,5 (\*\*) 964 (\*\*) 502 (\*\*) (\*\*) 548 (\*\*) (\*\*) 22F 522 0,1 (\*\*\*) (\*\*\*) (\*\*\*) (\*\*\*) (\*\*\*) (\*\*\*) (\*\*\*) 23F 6,80 18,1 1114 530 617 685 ND 24F 6,97 (\*\*\*) 18,4 (\*\*\*) 1166 (\*\*\*) 513 (\*\*\*) 591 708 0,2 (\*\*\*) 554 25F 7,23 6,92 19,3 18,97 913 772 427 438 479 488 453 2,3 3,0 26F 6,93 6,30 21,1 20,80 1634 1589 508 622 600 666 1110 1042 0,2 0,4 7,67 27F 7,35 19,0 18,80 1032 1094 518 578 586 581 697 646 1,2 0,4 28F 6,68 6,46 21,2 22,4 881 1281 793 499 535 557 582 565 ND 0,4 7,17 21,3 22,44 9365 8678 826 886 5710 5660 4,4 29F 7,08 856 912 1,6 (\*\*\*) (\*\*\*) 30F 7,56 (\*\*\*) 19,9 (\*\*\*) 1235 (\*\*\*) 596 691 (\*\*\*) 725 (\*\*\*) 0,3 (\*\*\*) (\*\*\*) (\*\*\*) (\*\*\*) (\*\*\*) (\*\*\*) (\*\*\*) 31F (--) (--) (--) (--) (--) (--) 32F 7,67 7,10 18,6 19,20 838 852 419 415 510 505 575 566 0,3 8.0 33F 6,59 6,63 21,8 20,73 2831 575 689 670 2351 3,9 50 34F 7,21 (\*\*\*) 19,7 (\*\*\*) 1502 558 (\*\*\*) 613 (\*\*\*) 1070 (\*\*\*) ND (\*\*\*) 35F 7,80 7,97 17,6 20,90 1541 760 816 1023 6,6 0,4 811 36F 7,50 6,72 18,9 19,02 1098 1197 553 684 567 696 633 786 0,4 7,4 6,93 22,0 8810 540 459 597 4288 2815 36 77 23,70 514 AySA-LM5145 6,06 (---) 19,44 1621 589 (---) 720 (---) 1108 (---) 7,4 AySA-MO541 (----) 6,57 (----) 21,10 (----) 2223 (----) 764 (----) 795 (----) 1.900 (----) 7,8 6,69 19,0 1094 444 434 462 691 0,2 0,4 AySA-EZ5154 6,80 20,21 938 508 584 AySA-LA523 7,50 7,94 21,0 22,86 3347 2865 614 642 705 694 2036 2043 2,4 0,2 AySA-AB577 343 6,71 20,0 20,42 537 502 192 217 221 195 371 AySA-AV522 7,04 7,63 20,5 24,40 809 311 386 352 369

ND: No detectado. Los Bicarbonatos se calculan a partir de la Alcalinidad cuando el pH es menor a 8,3

### Observaciones:

- (-) Por rotura de dado y caño, no se pudo muestrear.
- (--) No se pudo monitorear el pozo por estar obstruido por un conteiner.
- (---) Pozo no oprable en la presente campaña.
- (----) Pozo obstruido por tierra y pasto, no se pudo muestrear ya que no se detecto la ubicación.
- (\*) Pozo destruido, caño interno torcido, imposibidad de introducir la bomba para purgar.
- \*\*) No se pudo monitorear el pozo debido a que se realizó un camino de tierra sobre el mismo.
- (\*\*\*) Pozo no monitoreados en la presente campaña.



# CALIDAD DE AGUAS SUBTERRÁNEAS DE LA CUENCA MATANZA - RIACHUELO: ACUÍFERO FREÁTICO

# PARAMETROS FISICO-QUIMICOS CALCULADOS EN LABORATORIO - INA CTUA - CAMPAÑAS OCT/NOV 2014- FEB/MAR 2015

|             |             |              |            |                             |             |             |              |              |           | S DE CALIDA                      | D              |         |            |            |          |          |                  |                  |
|-------------|-------------|--------------|------------|-----------------------------|-------------|-------------|--------------|--------------|-----------|----------------------------------|----------------|---------|------------|------------|----------|----------|------------------|------------------|
| Código      | Clor        | uros         | Durezo     | a Total                     | Cal         | lcio        | Mag          | nesio        | Sulf      | atos                             | Arsé           | nico    | Soc        | dio        | Pote     | asio     | -                | ro de<br>osfatos |
| del<br>Pozo | Oct/Nov     | Feb/Mar      | Oct/Nov    | Feb/Mar                     | Oct/Nov     | Feb/Mar     | Oct/Nov      | Feb/Mar      | Oct/Nov   | Feb/Mar                          | Oct/Nov        | Feb/Mar | Oct/Nov    | Feb/Mar    | Oct/Nov  | Feb/Mar  | Oct/Nov          | Feb/Mar          |
| 1 020       | 2014        | 2015         | 2014       | 2015<br>aCO <sub>3</sub> /I | 2014        | 2015        | 2014         | 2015         | 2014      | 2015<br>6 <b>0<sub>4</sub>/I</b> | 2014           | 2015    | 2014       | 2015       | 2014     | 2015     | 2014             | 2015<br>-PO₄/I   |
| 45          |             | CI/I         | _          |                             | _           | Ca/l        |              | Mg/I         | _         |                                  | _              | As/I    |            | Na/I       | _        | K/I      | _                |                  |
| 1F          | 23,8        | 21,3         | 434        | 429                         | 125         | 127         | 29,8         | 26,9         | 45        | 48                               | 0,008          | 0,011   | 53         | 65         | 22       | 22       | 0,270            | 0,250            |
| 2F          | 60,5        | 34,2         | 179        | 181                         | 42,4        | 44,1        | 17,8         | 17,3         | 54        | 32<br>ND                         | 0,019          | 0,025   | 244<br>129 | 190<br>129 | 44<br>34 | 43<br>34 | 0,061            | 0,077            |
| 3F<br>4F    | 119         | 119          | 358<br>275 | 395<br>301                  | 108         | 119         | 21,5         | 24,2         | ND<br>8,5 | ND<br>10.0                       | 0,011          | 0,007   | 47         | 50         | 28       | 27       | 0,110<br>< 0.030 | 0,210<br>0,055   |
| 5F          | 6,0<br>42,7 | 6,0<br>43,7  | 375        | 371                         | 61,4<br>105 | 67,7<br>105 | 29,8<br>27,3 | 32,1<br>23,4 | 66        | 10,0<br>77                       | 0,017<br>0,011 | 0,014   | 116        | 120        | 10       | 10       | 0,032            | 0,033            |
| 6F          | 1300        | 45,7<br>1519 | 566        | 615                         | 161         | 173         | 43,9         | 44,7         | 17        | 22                               | < 0.006        | NSIR    | 1112       | 1283       | 40       | 39       | 4,400            | 4,600            |
| 7F          | 37,2        | 43,7         | 188        | 190                         | 48,3        | 48,6        | 16,6         | 16,8         | 36        | 39                               | 0,026          | 0,026   | 103        | 99         | 23       | 22       | 0,076            | 0,058            |
| 8F          | 33,4        | 27,8         | 515        | 566                         | 137         | 141         | 42,5         | 52,2         | 35        | 19                               | 0,020          | 0,020   | 49         | 48         | 19       | 19       | 0,100            | 0,038            |
| 9F          | 51,1        | (***)        | 432        | (***)                       | 129         | (***)       | 26,9         | (***)        | 30        | (***)                            | 0,009          | (***)   | 36         | (***)      | 11       | (***)    | 0,110            | (***)            |
| 10F         | 27,8        | 32,8         | 384        | 415                         | 115         | 125         | 23,9         | 25,0         | 31        | 32                               | 0,017          | 0,015   | 51         | 46         | 39       | 37       | 0,058            | 0,076            |
| 11F         | 27,8        | (***)        | 229        | (***)                       | 55,2        | (***)       | 22,2         | (***)        | 27        | (***)                            | 0,055          | (***)   | 406        | (***)      | 22       | (***)    | 0,076            | (***)            |
| 12F         | 127         | (***)        | 263        | (***)                       | 64,6        | (***)       | 24,9         | (***)        | 204       | (***)                            | 0,037          | (***)   | 286        | (***)      | 16       | (***)    | 0,120            | (***)            |
| 13F         | 359         | 517          | 600        | 657                         | 145         | 159         | 58,1         | 63,4         | 143       | 33                               | 0,016          | 0,010   | 78         | 84         | 26       | 33       | 0,038            | 0,041            |
| 14F         | 24,8        | 24,3         | 505        | 501                         | 142         | 141         | 36,7         | 36,4         | 92,0      | 97                               | 0,014          | 0,013   | 25         | 26         | 25       | 24       | 0,170            | 0,230            |
| 15F         | < 4.0       | < 4.0        | 165        | 184                         | 39,8        | 41,8        | 16,0         | 19,4         | 15        | 8,0                              | 0,030          | 0,022   | 173        | 159        | 14       | 14       | 0,110            | 0,120            |
| 16F         | 10,9        | (*)          | 375        | (*)                         | 108         | (*)         | 25,6         | (*)          | 17        | (*)                              | 0,013          | (*)     | <15        | (*)        | 12       | (*)      | 0,096            | (*)              |
| 17F         | 6,0         | 6,9          | 129        | 131                         | 27,4        | 28,2        | 14,8         | 14,9         | NSIR      | 15                               | 0,066          | 0,059   | 216        | 217        | 15       | 16       | 0,081            | 0,083            |
| 18F         | 11,9        | 12,4         | 241        | 264                         | 57,5        | 63,3        | 23,7         | 25,8         | 21        | 19                               | 0,006          | 0,033   | 86         | 104        | 24       | 18       | 0,063            | 0,110            |
| 19F         | 11,9        | (***)        | 110        | (***)                       | 28,3        | (***)       | 9,6          | (***)        | NSIR      | (***)                            | 0,076          | (***)   | 364        | (***)      | 18       | (***)    | 0,160            | (***)            |
| 20F         | 5,5         | (***)        | 152        | (***)                       | 30,5        | (***)       | 18,6         | (***)        | 37        | (***)                            | 0,079          | (***)   | 216        | (***)      | 13       | (***)    | 0,120            | (***)            |
| 21F         | 24,8        | 24,3         | 316        | 355                         | 84,2        | 93,3        | 25,9         | 29,7         | 19        | 17                               | 0,032          | 0,027   | 79         | 73         | 17       | 17       | 0,220            | 0,190            |
| 22F         | 5,5         | (**)         | 174        | (**)                        | 405         | (**)        | 17,8         | (**)         | 13        | (**)                             | 0,032          | (**)    | 126        | (**)       | 18       | (**)     | 0,073            | (**)             |
| 23F         | 10,4        | (***)        | 198        | (***)                       | 45,0        | (***)       | 21,0         | (***)        | 21        | (***)                            | 0,051          | (***)   | 194        | (***)      | 10       | (***)    | 0,089            | (***)            |
| 24F         | 38,2        | (***)        | 240        | (***)                       | 50,0        | (***)       | 28,6         | (***)        | 31        | (***)                            | 0,018          | (***)   | 141        | (***)      | 12       | (***)    | < 0.030          | (***)            |
| 25F         | 7,9         | 7,4          | 73,1       | 73,5                        | 21,2        | 20,9        | 4,9          | 5,2          | 7,8       | 8,1                              | 0,095          | 0,087   | 164        | 164        | 10       | 9,8      | 0,110            | 0,120            |
| 26F         | 165         | 159          | 758        | 756                         | 200         | 200         | 63,5         | 62,5         | 79        | 51                               | NSIR           | NSIR    | 50         | 63         | 25       | 24       | 0,033            | 0,084            |
| 27F         | 28,8        | 35,0         | 101        | 98,6                        | 24,1        | 21,9        | 10,0         | 10,4         | 21        | 22                               | 0,024          | 0,022   | 201        | 208        | 13       | 13       | 0,042            | 0,062            |
| 28F         | 7,4         | 17,1         | 403        | 440                         | 107         | 119         | 33,2         | 35,1         | 25        | 28                               | 0,020          | 0,019   | 27         | 26         | 11       | 12       | < 0.030          | 0,031            |
| 29F         | 2194        | 2293         | 982        | 976                         | 228         | 222         | 101          | 103          | 935       | 961                              | 0,017          | NSIR    | 1788       | 1787       | 61       | 62       | 0,140            | 0,058            |
| 30F         | 5,0         | (***)        | 82,8       | (***)                       | 16,2        | (***)       | 10,4         | (***)        | 27        | (***)                            | 0,077          | (***)   | 241        | (***)      | 18       | (***)    | 0,084            | (***)            |

| 31F          | ()   | (***) | ()   | (***) | ()   | (***) | ()   | (***) | ()   | (***) | ()      | (***)   | ()   | (***) | () | (***) | ()    | (***) |
|--------------|------|-------|------|-------|------|-------|------|-------|------|-------|---------|---------|------|-------|----|-------|-------|-------|
| 32F          | 13,4 | 15,4  | 131  | 144   | 32,4 | 34,9  | 12,3 | 13,8  | 7,8  | 7,2   | 0,056   | 0,050   | 156  | 154   | 6  | 6,4   | 0,053 | 0,097 |
| 33F          | 78,9 | 142   | 1459 | 1502  | 524  | 52,6  | 37,1 | 46,1  | 1026 | 1135  | < 0.006 | 0,010   | 109  | 131   | 30 | 34    | 0,350 | 1,300 |
| 34F          | 80,9 | (***) | 268  | (***) | 82,9 | (***) | 14,5 | (***) | 43   | (***) | 0,029   | (***)   | 244  | (***) | 13 | (***) | 0,040 | (***) |
| 35F          | 43,7 | 44,7  | 82,8 | 87,6  | 17,0 | 18,9  | 9,9  | 9,8   | 78   | 128   | 0,188   | 0,204   | 377  | 371   | 11 | 11    | 0,200 | 0,210 |
| 36F          | 12,9 | 30,0  | 98,6 | 112   | 26,7 | 30,9  | 7,8  | 8,5   | 16   | 38    | 0,037   | 0,022   | 159  | 149   | 10 | 17    | 0,046 | 0,085 |
| 37F          | 2159 | 1175  | 952  | 947   | 177  | 181   | 125  | 121   | 535  | 290   | 0,016   | 0,023   | 1475 | 777   | 44 | 33    | 0,270 | 1,200 |
| AySA-LM 5145 | ()   | 79,2  | ()   | 724   | ()   | 198   | ()   | 56,2  | ()   | 171   | ()      | < 0.006 | ()   | 69    | () | 28    | ()    | 0,100 |
| AySA-MO541   | ()   | 278   | ()   | 1003  | ()   | 280   | ()   | 73,7  | ()   | 25    | ()      | 0,012   | ()   | 47    | () | 38    | ()    | 0,120 |
| AySA-EZ5154  | 57,1 | 38,7  | 427  | 424   | 124  | 122   | 29,0 | 29,5  | 20   | 14    | 0,055   | 0,087   | 111  | 112   | 13 | 12    | 0,041 | 0,039 |
| AySA-LA523   | 556  | 636   | 341  | 342   | 76,9 | 78,5  | 36,4 | 35,6  | 338  | 336   | 0,038   | 0,040   | 571  | 693   | 39 | 38    | 1,400 | 1,400 |
| AySA-AB 577  | 38,7 | 42,7  | 194  | 196   | 44,2 | 49,7  | 20,5 | 17,6  | 29   | 24    | 0,025   | 0,022   | 25   | 25    | 11 | 10    | 0,096 | 0,040 |
| AySA-AV522   | 50,6 | 53,1  | 80,8 | 80,8  | 21,2 | 21,7  | 6,8  | 6,5   | 26   | 26    | 0,093   | 0,083   | 146  | 147   | 13 | 13    | 0,600 | 0,550 |

ND: No detectado; NSIR: no se informa resultado por interferencia.

### Observaciones:

(-) Por rotura de dado y caño, no se pudo muestrear.

(--) No se pudo monitorear el pozo por estar obstruido por un conteiner.

(---) Pozo no oprable en la presente campaña.

(----) Pozo obstruido por tierra y pasto, no se pudo muestrear ya que no se detecto la ubicación.

(\*) Pozo destruido, caño interno torcido, imposibidad de introducir la bomba para purgar.

(\*\*) No se pudo monitorear el pozo debido a que se realizó un camino de tierra sobre el mismo.

(\*\*\*) Pozo no monitoreados en la presente campaña.



Hoja 2/3

| <b>CALIDAD DE A</b>         | CALIDAD DE AGUAS SUBTERRÁNEAS DE LA CUENCA MATANZA - RIACHUELO: ACUÍFERO FREÁTICO PARAMETROS FISICO-QUIMICOS DE CAMPO Y LABORATORIO - INA CTUA - CAMPAÑAS OCT/NOV 2014- FEB/MAR 2015 |               |              |                     |               |              |                 |                    |              |              |              |                    |              |                        |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|---------------------|---------------|--------------|-----------------|--------------------|--------------|--------------|--------------|--------------------|--------------|------------------------|
| <b>PARAMETROS</b>           | FISICO-QUIN                                                                                                                                                                          | AICOS DE CA   | MPO Y LAB    | ORATORIO - I        | NA CTUA - C   |              |                 |                    | 2015         |              |              |                    |              |                        |
|                             |                                                                                                                                                                                      |               | 1            |                     |               | COMPL        | JESTOS DEL NITR | ÓGENO              | 1            |              |              |                    | 1            |                        |
| Código<br>del               | Nitrógeno T                                                                                                                                                                          | otal Kjeldahl | Nitrógeno    | amoniacal           | Nitrógeno     | de Nitratos  | Nitro           | itos 1             | Nitrógeno    |              | Nitro        | itos²              | Nitróge      | no Total               |
| Pozo                        | Oct/Nov 2014                                                                                                                                                                         | Feb/Mar 2015  | Oct/Nov 2014 | Feb/Mar 2015        | Oct/Nov 2014  | Feb/Mar 2015 | Oct/Nov 2014    | Feb/Mar 2015       | Oct/Nov 2014 | Feb/Mar 2015 | Oct/Nov 2014 | Feb/Mar 2015       | Oct/Nov 2014 | Feb/Mar 2015           |
|                             | mg I                                                                                                                                                                                 | NTK/I         | mg N         | -NH <sub>3</sub> /I | mg N          | -NO₃/I       | mg f            | 1O <sub>3</sub> /I | mg N         | -NO₂/I       | mg f         | NO <sub>2</sub> /I | mg N-        | -N <sub>total</sub> /I |
| 1F                          | 1,4                                                                                                                                                                                  | 1,0           | 1,1          | 0,44                | 2,9           | 0,58         | 12,8            | 2,6                | 0,050        | < 0.012      | 0,165        | ****               | 4,4          | 1,6                    |
| 2F                          | ND                                                                                                                                                                                   | < 1.0         | < 0.09       | 0,17                | ND            | ND           |                 |                    | ND           | ND           |              |                    |              |                        |
| 3F                          | 1,5                                                                                                                                                                                  | < 1.0         | 0,2          | 0,34                | ND            | < 0.29       |                 |                    | ND           | ND           |              |                    | 1,5          |                        |
| 4F                          | < 1.0                                                                                                                                                                                | ND            | ND           | < 0.09              | < 1.0         | < 1.0        |                 |                    | ND           | ND           |              |                    |              |                        |
| 5F                          | ND                                                                                                                                                                                   | 1,3           | ND           | < 0.09              | 14            | 15           | 62,0            | 66,5               | < 0.012      | ND           |              |                    | 14,0         | 16                     |
| 6F                          | 18                                                                                                                                                                                   | 18            | 14,5         | 17,3                | 0,6           | < 0.29       | 2,8             |                    | ND           | ND           |              |                    | 19,0         | 18                     |
| 7F                          | ND                                                                                                                                                                                   | ND            | 0,2          | 0,22                | 1,6           | 1,9          | 7,1             | 8,4                | 0,013        | ND           | 0,043        |                    | 1,6          | 1,9                    |
| 8F                          | ND                                                                                                                                                                                   | < 1.0         | ND           | ND                  | 2,2           | 1,6          | 9,7             | 7,1                | ND           | < 0.012      |              |                    | 2,2          | 1,6                    |
| 9F                          | ND                                                                                                                                                                                   | (***)         | ND           | (***)               | 0,5           | (***)        | 2,1             | (***)              | ND           | (***)        |              | (***)              | 0,5          | (***)                  |
| 10F                         | ND                                                                                                                                                                                   | ND            | ND           | < 0.09              | 15            | 16           | 66,5            | 70,9               | ND           | ND           |              |                    | 15           | 16                     |
| 11F                         | < 1.0                                                                                                                                                                                | (***)         | 0,2          | (***)               | < 0.29        | (***)        |                 | (***)              | < 0.012      | (***)        | ****         | (***)              | ****         | (***)                  |
| 12F                         | < 1.0                                                                                                                                                                                | (***)         | ND           | (***)               | 2,4           | (***)        | 10,6            | (***)              | ND           | (***)        |              | (***)              | 2,4          | (***)                  |
| 13F                         | < 1.0                                                                                                                                                                                | < 1.0         | ND           | ND                  | 11            | 13           | 48,7            | 57,6               | ND           | ND           |              |                    | 11           | 13                     |
| 14F                         | ND                                                                                                                                                                                   | ND            | ND           | 0,12                | 6,3           | 6,9          | 28,9            | 30,6               | < 0.012      | ND           |              |                    | 6,3          | 6,9                    |
| 15F                         | < 1.0                                                                                                                                                                                | < 1.0         | ND           | 0,32                | 2,5           | 1,1          | 11,1            | 4,9                | 0,018        | ND           | 0,059        |                    | 2,5          | 1,1                    |
| 16F                         | ND                                                                                                                                                                                   | (*)           | ND           | (*)                 | 1,7           | (*)          | 7,5             | (*)                | ND           | (*)          |              | (*)                | 1,7          | (*)                    |
| 17F                         | < 1.0                                                                                                                                                                                | < 1.0         | < 0.09       | ND                  | 1,5           | 1,7          | 6,6             | 7,5                | ND           | ND           |              |                    | 1,5          | 1,7                    |
| 18F                         | ND                                                                                                                                                                                   | < 1.0         | ND           | 0,27                | 2,5           | 2,3          | 11,1            | 10,2               | < 0.012      | ND           |              |                    | 2,5          | 2,3                    |
| 19F                         | ND                                                                                                                                                                                   | (***)         | ND           | (***)               | < 1.0         | (***)        |                 | (***)              | 0,016        | (***)        | 0,053        | (***)              | ****         | (***)                  |
| 20F                         | < 1.0                                                                                                                                                                                | (***)         | ND           | (***)               | 3,3           | (***)        | 14,6            | (***)              | < 0.012      | (***)        | ****         | (***)              | 3,3          | (***)                  |
| 21F                         | ND                                                                                                                                                                                   | ND            | ND           | ND                  | 6,6           | 4,4          | 29,2            | 19,5               | < 0.012      | < 0.012      |              |                    | 6,6          | 4,4                    |
| 22F                         | ND                                                                                                                                                                                   | (**)          | ND           | (**)                | 1,4           | (**)         | 6,2             | (**)               | < 0.012      | (**)         |              | (**)               | 1,4          | (**)                   |
| 23F                         | < 1.0                                                                                                                                                                                | (***)         | ND           | (***)               | 3,0           | (***)        | 13,3            | (***)              | ND           | (***)        |              | (***)              | 3,0          | (***)                  |
| 24F                         | ND                                                                                                                                                                                   | (***)         | ND           | (***)               | 7,3           | (***)        | 32,3            | (***)              | ND           | (***)        |              | (***)              | 7,3          | (***)                  |
| 25F                         | ND                                                                                                                                                                                   | < 1.0         | ND           | ND                  | 3,3           | 3,8          | 14,6            | 16,8               | ND           | ND           |              |                    | 3,3          | 3,8                    |
| 26F                         | ND                                                                                                                                                                                   | ND            | ND           | 0,16                | 21            | 16           | 93,0            | 70,9               | 0,028        | ND           | 0,092        |                    | 21           | 16                     |
| 27F                         | ND                                                                                                                                                                                   | ND            | ND           | ND                  | 5,0           | 5,6          | 22,2            | 24,8               | < 0.012      | < 0.012      |              |                    | 5,0          | 5,6                    |
| 28F                         | < 1.0                                                                                                                                                                                | ND            | ND           | ND                  | 4,0           | 6,8          | 17,7            | 30,1               | ND           | ND           |              | ****               | 4,0          | 6,8                    |
| 29F                         | < 1.0                                                                                                                                                                                | < 1.0         | 0,2          | 0,35                | ND            | 0,46         |                 | 2,0                | ND           | ND           | ****         |                    | ****         |                        |
| 30F                         | ND ( )                                                                                                                                                                               | (***)         | ND ( )       | (***)               | < 1.0         | (***)        |                 | (***)              | ND ( )       | (***)        |              | (***)              |              | (***)                  |
| 31F                         | ()                                                                                                                                                                                   | (***)         | ()           | (***)               | ()            | (***)        | ()              | (***)              | ()           | (***)        | ()           | (***)              | ()           | (***)                  |
| 32F<br>33F                  | ND                                                                                                                                                                                   | ND<br>C.4     | ND           | ND .                | 13            | 15           | 57,6            | 66,5               | < 0.012      | < 0.012      | ****         | ****               | 13           | 15                     |
| 33F<br>34F                  | 2,7                                                                                                                                                                                  | 6,4           | 2,1          | 5 (***)             | < 0.29        | ND<br>(***)  | 30.0            | (***)              | ND<br>ND     | ND<br>(***)  | ****         | (***)              | 2,7          | 6,4<br>(***)           |
| 34F<br>35F                  | < 1.0<br>ND                                                                                                                                                                          | (***)<br>ND   | ND<br>ND     | < 0.09              | 6,5<br>3,6    | 1,9          | 28,8<br>15,9    |                    | ND<br>0,035  |              | 0,115        | 0,227              | 6,5<br>3,6   | 2.0                    |
| 35F<br>36F                  | ND<br>ND                                                                                                                                                                             | ND<br>ND      | ND<br>ND     | 0,12                |               | 3,9          |                 | 8,4                | 0,035<br>ND  | 0,069        |              |                    |              | 3,9                    |
| 30F<br>37F                  | 1,9                                                                                                                                                                                  | 9,6           | 1,2          | 9,5                 | 4,7           | 0,41         | 20,8            | 17,3               | ND<br>ND     | 0,017        | ****         | 0,056              | 4,7<br>2,5   | 3,9<br>10              |
| AySA-LM5145                 | ()                                                                                                                                                                                   | 9,6<br>ND     | ()           | 9,5<br>ND           | 0,6           | 16           | ()              |                    | ()           | 0,017<br>ND  | ()           |                    | ()           | 16                     |
| AySA-LIVIS145<br>AySA-MO541 | ()                                                                                                                                                                                   | ND<br>ND      | ()           | < 0.09              | ()            | 67           | ()              | 70,9<br>297        | ()           | 0,047        | ()           | 0,155              | ()           | 67                     |
| AySA-INOS41<br>AySA-EZ5154  | ()<br>ND                                                                                                                                                                             | ND<br>ND      | < 0.09       | < 0.09              | 14            | 13           | 62,0            | 57,6               | 0,017        | 0,047        | 0,056        | 0,155              | 14           | 13                     |
| AySA-EZ5154<br>AySA-LA523   | 5,3                                                                                                                                                                                  | 4,3           | 4,7          | 2,8                 | < 0.29        | ND           | 62,0            |                    | 0,017<br>ND  | 0,024<br>ND  |              | 0,079              | 5,3          | 4,3                    |
| AySA-AB577                  | ND                                                                                                                                                                                   | 4,3<br>ND     | ND           | < 0.09              | 0,7           | ND<br>ND     | 3,1             |                    | < 0.012      | ND<br>ND     |              |                    | 0,7          | 4,3                    |
| AySA-AV522                  | 5,4                                                                                                                                                                                  | 4,6           | 4,7          | 4,1                 | < 0.29        | ND<br>ND     |                 |                    | ND           | ND<br>ND     |              |                    | 5,4          | 4,6                    |
| Ayon-AVOZZ                  | 3,4                                                                                                                                                                                  | 4,0           | 4,/          | 4,1                 | <b>\ U.29</b> | ND           |                 |                    | ND           | ND           |              |                    | 5,4          | 4,0                    |

AySA-AV\$22 5,4 4,6 4,7 4,1 < 0.29 ND .... ND ND: NO detectado; NSIR: Nos informa resultado por interferencias presentes en la muestra. Los Bicarbonatos se calculan a partir de la Alcalinidad cuando el pH es menor a 8,3 l

<sup>1</sup> Los Nitratos (NO<sub>3</sub>) se calcularon a partir de Nitrógeno de Nitrato (N-NO<sub>3</sub>)

<sup>2</sup> Los Nitratos (NO<sub>2</sub>) se calcularon a partir de Nitrógeno de Nitrito (N-NO<sub>2</sub>)

\*\*Observaciones:
(-) Por rotura de dado y caño, no se pudo muestrear.
(-) No se pudo monitorear el pozo por estar obstruido por un conteiner.
(---) Pozo no oprable en la presente campaña.
(----) Pozo obstruido por tierra y pasto, no se pudo muestrear ya que no se detecto la ubicación.
(\*\*\*) Pozo obstruido, caño interno torcido, imposibidad de introducir la bomba para purgar.
(\*\*\*) Pozo destruido, caño interno torcido, imposibidad de introducir la bomba para purgar.
(\*\*\*) Pozo no monitoread el pozo debido a que se realizó un camino de tierra sobre el mismo.
(\*\*\*\*) Pozo no monitoreados en la presente campaña.



|                 |              |                       |              |                    |              |                     | DARAMETROS F | SICO-OTHERICOS                      |        |                                    |              |                     |              |              |
|-----------------|--------------|-----------------------|--------------|--------------------|--------------|---------------------|--------------|-------------------------------------|--------|------------------------------------|--------------|---------------------|--------------|--------------|
|                 |              | эH                    | Tomn         | eratura            | Conductivia  | dad eléctrica       | Alcali       | ISICO-QUIMICOS                      | Bicarb | onatos                             | Sólidos disu | eltos totales       | Turk         | iedad        |
| Código del Pozo |              |                       |              | l                  |              |                     |              |                                     |        |                                    |              | l                   |              | 1            |
|                 |              | Feb/Mar 2015<br>le pH | Oct/Nov 2014 | Feb/Mar 2015<br>°C | Oct/Nov 2014 | Feb/Mar 2015<br>/cm | Oct/Nov 2014 | Feb/Mar 2015<br>aCO <sub>3</sub> /I | -      | Feb/Mar 2015<br>CO <sub>3</sub> /I |              | Feb/Mar 2015<br>g/l | Oct/Nov 2014 | Feb/Mar 2015 |
| 1P              |              |                       |              |                    | 1020         | ı                   | 571          | <u> </u>                            | 635    | <u> </u>                           | 673          | 579                 |              | ND           |
| 2P              | 7,37<br>7,05 | 7,51<br>6,90          | 18,6<br>19,3 | 18,21<br>19,49     | 2192         | 983<br>2152         | 554          | 571<br>593                          | 563    | 618<br>630                         | 1346         | 1289                | 0,1          | 0,2          |
| 3P              | 7,03         | 7,20                  | 20,5         | 19,49              | 1361         | 1171                | 634          | 687                                 | 756    | 753                                | 862          | 755                 | ND           | 0,2          |
| 4P              | 7,34         | 7,41                  | 19,4         | 20,70              | 921          | 775                 | 449          | 495                                 | 538    | 519                                | 574          | 581                 | ND ND        | 0,3          |
| 5P              | (¤)          | (*)                   | (¤)          | (*)                | (¤)          | (*)                 | (¤)          | (*)                                 | (¤)    | (*)                                | (¤)          | (*)                 | (¤)          | (*)          |
| 6P              | 7,05         | 6,80                  | 20,1         | 19,74              | 7728         | 7875                | 1160         | 1126                                | 1278   | 1268                               | 4641         | 4468                | 3,0          | 1,5          |
| 7P              | 7,01         | 6,64                  | 19,3         | 20,18              | 1299         | 1225                | 571          | 596                                 | 657    | 645                                | 864          | 821                 | ND           | ND           |
| 8P              | 6,92         | 7,26                  | 19,1         | 19,00              | 799          | 609                 | 356          | 359                                 | 397    | 377                                | 447          | 424                 | 0,1          | ND           |
| 9P              | 7,64         | (***)                 | 21,2         | (***)              | 1060         | (***)               | 505          | (***)                               | 522    | (***)                              | 696          | (***)               | ND           | (***)        |
| 10P             | 7,57         | 7,61                  | 21,2         | 23,85              | 899          | 523                 | 462          | 523                                 | 503    | 516                                | 554          | 438                 | 2,4          | 5,0          |
| 11P             | 6,91         | (***)                 | 19,0         | (***)              | 1520         | (***)               | 606          | (***)                               | 638    | (***)                              | 801          | (***)               | ND           | (***)        |
| 12P             | 7,08         | (***)                 | 20,6         | (***)              | 2288         | (***)               | 470          | (***)                               | 524    | (***)                              | 1992         | (***)               | 3,5          | (***)        |
| 13P             | 7,86         | 7,19                  | 19,8         | 18,83              | 1026         | 1064                | 487          | 533                                 | 581    | 527                                | 721          | 666                 | 0,6          | 0,5          |
| 14P             | 7,01         | 6,72                  | 19,1         | 19,70              | 1327         | 1205                | 399          | 438                                 | 460    | 460                                | 838          | 795                 | 9,1          | 5,7          |
| 15P             | 7,30         | 6,98                  | 20,3         | 19,57              | 896          | 823                 | 437          | 492                                 | 512    | 529                                | 625          | 541                 | ND           | 0,2          |
| SV 16P          | 7,69         | 7,32                  | 19,0         | 19,78              | 1010         | 864                 | 394          | 460                                 | 469    | 495                                | 646          | 507                 | ND           | 0,1          |
| 17P             | 7,13         | 7,01                  | 19,4         | 19,41              | 3922         | 3811                | 437          | 428                                 | 478    | 472                                | 2488         | 2426                | ND           | 0,6          |
| 18P             | 7,12         | 7,41                  | 19,3         | 21,08              | 4452         | 3033                | 492          | 485                                 | 514    | 513                                | 2307         | 2200                | 0,1          | 0,2          |
| 19P             | 7,30         | (***)                 | 20,2         | (***)              | 1580         | (***)               | 598          | (***)                               | 705    | (***)                              | 1028         | (***)               | 2,5          | (***)        |
| 20P             | 7,45         | (***)                 | 19,2         | (***)              | 1310         | (***)               | 485          | (***)                               | 564    | (***)                              | 880          | (***)               | 4,7          | (***)        |
| 21P             | 7,02         | 6,96                  | 20,3         | 19,43              | 832          | 2360                | 442          | 449                                 | 466    | 488                                | 556          | 513                 | ND           | 0,2          |
| 22P             | 7,79         | 6,80                  | 19,2         | 20,70              | 661          | 571                 | 356          | 384                                 | 408    | 396                                | 398          | 341                 | 0,5          | 0,2          |
| 23P             | 7,15         | (***)                 | 18,5         | (***)              | 1156         | (***)               | 581          | (***)                               | 758    | (***)                              | 722          | (***)               | 0,4          | (***)        |
| 24P             | 7,16         | (***)                 | 19,6         | (***)              | 1390         | (***)               | 573          | (***)                               | 580    | (***)                              | 807          | (***)               | ND           | (***)        |
| 25P             | 7,60         | 6,90                  | 19,2         | 19,40              | 756          | 710                 | 434          | 435                                 | 440    | 387                                | 523          | 433                 | 2,8          | 0,7          |
| 27P             | 7,58         | (***)                 | 19,9         | (***)              | 1367         | (***)               | 495          | (***)                               | 594    | (***)                              | 861          | (***)               | 5,4          | (***)        |
| 28P             | 7,46         | 7,17                  | 19,8         | 19,75              | 922          | 949                 | 621          | 486                                 | 528    | 538                                | 648          | 576                 | ND           | ND           |
| 29P             | 6,80         | 6,95                  | 20,4         | 20,78              | 32230        | 27670               | 591          | 632                                 | 690    | 672                                | 22400        | 21190               | 1,5          | 0,3          |
| 30P             | 7,19         | (***)                 | 19,8         | (***)              | 2229         | (***)               | 578          | (***)                               | 641    | (***)                              | 1329         | (***)               | ND           | (***)        |
| 32P             | 7,33         | 6,93                  | 19,5         | 20,10              | 955          | 910                 | 422          | 445                                 | 525    | 494                                | 636          | 619                 | 0,3          | 2,0          |
| 33P             | 6,54         | 6,78                  | 20,4         | 21,64              | 20820        | 19180               | 651          | 752                                 | 761    | 741                                | 13220        | 13520               | 0,3          | 20           |
| 34P             | 7,34         | (***)                 | 20,0         | (***)              | 1087         | (***)               | 442          | (***)                               | 496    | (***)                              | 740          | (***)               | 0,2          | (***)        |
| 35P             | 7,65         | 7,28                  | 18,9         | 19,30              | 1268         | 1707                | 422          | 507                                 | 496    | 540                                | 819          | 1170                | ND           | 1,8          |
| 36P             | 8,00         | 7,35                  | 18,9         | 18,73              | 1636         | 878                 | 513          | 538                                 | 564    | 546                                | 674          | 614                 | 18           | 18           |
| 37P             | 6,15         | 6,36                  | 20,7         | 21,00              | 54480        | 44580               | 442          | 464                                 | 512    | 489                                | 42740        | 39950               | 1,3          | 3,5          |
| AySA-LM740      | 6,73         | 6,81                  | 19,6         | 19,80              | 1484         | 1375                | 568          | 621                                 | 645    | 629                                | 894          | 829                 | 4,6          | 0,4          |
| AySA-MO119      | 7,01         | 7,57                  | 19,8         | 19,80              | 1301         | 1215                | 480          | 571                                 | 546    | 557                                | 812          | 780                 | 1,3          | 0,2          |
| AySA-EE713      | 6,79         | 7,35                  | 19,5         | 19,80              | 1005         | 903                 | 444          | 482                                 | 507    | 511                                | 574          | 534                 | 14           | 2,2          |
| AySA-CF721      | 8,02         | 7,80                  | 20,7         | 20,90              | 525          | 477                 | 163          | 172                                 | 187    | 182                                | 369          | 336                 | 0,2          | 0,2          |
| AySA-AB715      | 7,34         | (**)                  | 21,1         | (**)               | 687          | (**)                | 384          | (**)                                | 414    | (**)                               | 413          | (**)                | 5,5          | (**)         |
| AySA-LA702      | 7,22         | 7,93                  | 20,6         | 20,90              | 9086         | 8254                | 465          | 510                                 | 559    | 549                                | 5573         | 5443                | 11           | 205          |
| AySA-AV701      | 7,24         | 7,13                  | 20,1         | 20,40              | 1520         | 1461                | 573          | 642                                 | 675    | 670                                | 926          | 925                 | ND           | 2,2          |

ND: No detectado. Los Bicarbonatos se calculan a partir de la Alcalinidad cuando el pH es menor a 8,3

## Observaciones:

(x) No se pudo muestrear por obstrucción de la bomba por extraer cemento del interior del pozo durante el muestreo.

(\*) Pozo obstruido por obra vial

(\*\*) Pozo obstruido por tierra y pasto, no se pudo muestrear ya que no se detecto la ubicación. Se concurrio nuevamente el día 17/03 a pedido de Acumar, luego de ubicar nuevamente el pozo. Se encontró que a los 13 metros estaba obstruido, el nivel estático se encontraba en la obtrucción, por lo cual no se pudo extraer la muestra.

(\*\*\*) Pozo no monitoreados en la presente campaña.



| CALIDAD DE               | AGUAS SUB    | TERRÁNEAS    | DE LA CUEN   | ICA MATAN           | ZA - RIACHUE | LO: ACUÍFE   | RO PUELCHE   |              |               |                    |              |              |                 |                 |                 |                 |                 |                   |
|--------------------------|--------------|--------------|--------------|---------------------|--------------|--------------|--------------|--------------|---------------|--------------------|--------------|--------------|-----------------|-----------------|-----------------|-----------------|-----------------|-------------------|
| PARAMETRO                | S FISICO-QU  | JIMICOS ME   | DIDOS EN LA  | BORATORIO           | O - INA CTUA | - CAMPAÑA    | AS OCT/NO    |              |               |                    |              |              |                 |                 |                 |                 |                 |                   |
|                          |              |              |              |                     |              |              |              | PARAMET      | ROS DE CALIDA | AD                 |              |              |                 |                 |                 |                 |                 |                   |
| Código del               | Clor         | uros         | Durezo       | a Total             | Cal          | cio          | Mag          | nesio        | Sulf          | fatos              | Arsé         | inico        | So              | dio             | Pot             | asio            |                 | oro de<br>osfatos |
| Pozo                     | Oct/Nov 2014 | Feb/Mar 2015 | Oct/Nov 2014 | Feb/Mar 2015        | Oct/Nov 2014 | Feb/Mar 2015 | Oct/Nov 2014 | Feb/Mar 2015 | Oct/Nov 2014  | Feb/Mar 2015       | Oct/Nov 2014 | Feb/Mar 2015 | Oct/Nov<br>2014 | Feb/Mar<br>2015 | Oct/Nov<br>2014 | Feb/Mar<br>2015 | Oct/Nov<br>2014 | Feb/Mar<br>2015   |
|                          | mg           | CI/I         | mg Ca        | aCO <sub>3</sub> /I | mg           | Ca/I         | mg           | Mg/l         | mg :          | SO <sub>4</sub> /I | mg           | As/I         | 2014            | Na/I            |                 | K/I             |                 | -PO4/I            |
| 1P                       | 10,9         | 10,4         | 66,7         | 67,9                | 18,8         | 18,6         | 4,8          | 5,2          | 20            | 18                 | 0,067        | 0,063        | 228             | 228             | 8,3             | 8,6             | 0,100           | 0,110             |
| 2P                       | 228          | 226          | 285          | 283                 | 65,6         | 65,6         | 29,5         | 29,1         | 286           | 285                | 0,027        | 0,028        | 374             | 378             | 16              | 16              | 0,060           | 0,063             |
| 3P                       | 13,9         | 14,4         | 138          | 150                 | 32,4         | 39,0         | 14           | 12,8         | 86            | 89                 | 0,039        | 0,038        | 269             | 265             | 14              | 13              | 0,037           | 0,059             |
| 4P                       | 7,9          | 9,4          | 75,6         | 83,6                | 20,4         | 21,3         | 6            | 7,4          | 43            | 41                 | 0,047        | 0,040        | 191             | 183             | 10              | 9,3             | 0,066           | 0,091             |
| 5P                       | (¤)          | (*)          | (¤)          | (*)                 | (¤)          | (*)          | (¤)          | (*)          | (¤)           | (*)                | (¤)          | (*)          | (¤)             | (*)             | (¤)             | (*)             | (¤)             | (*)               |
| 6P                       | 1772         | 1787         | 595          | 646                 | 160          | 173          | 47,6         | 51,9         | 448           | 443                | 0,013        | NSIR         | 1498            | 1536            | 36              | 35              | 0,440           | 0,220             |
| 7P                       | 62           | 64,5         | 151          | 155                 | 37,9         | 38,4         | 13,8         | 14,5         | 43            | 44                 | 0,019        | 0,021        | 260             | 256             | 11              | 10              | 0,065           | 0,050             |
| 8P                       | 18,9         | 13,9         | 115          | 105                 | 29           | 27,9         | 10,4         | 8,6          | 23            | < 6.0              | 0,037        | 0,036        | 125             | 129             | 7,8             | 7,6             | 0,065           | 0,054             |
| 9P                       | 47,1         | (***)        | 101          | (***)               | 22,2         | (***)        | 11,1         | (***)        | 59            | (***)              | 0,038        | (***)        | 208             | (***)           | 12              | (***)           | 0,120           | (***)             |
| 10P                      | 11,4         | 11,4         | 101          | 110                 | 23,7         | 25,7         | 10,3         | 11,1         | 25            | 26                 | 0,071        | 0,060        | 184             | 183             | 9,7             | 11              | 0,110           | 0,120             |
| 11P                      | 24,8         | (***)        | 123          | (***)               | 30,5         | (***)        | 11,5         | (***)        | 109           | (***)              | 0,037        | (***)        | 248             | (***)           | 13              | (***)           | 0,039           | (***)             |
| 12P                      | 476          | (***)        | 546          | (***)               | 132          | (***)        | 53           | (***)        | 442           | (***)              | 0,014        | (***)        | 490             | (***)           | 21              | (***)           | 0,043           | (***)             |
| 13P                      | 15,4         | 16,4         | 99           | 109                 | 23,3         | 25,6         | 10           | 11,0         | 53            | 58                 | 0,026        | 0,029        | 227             | 222             | 8,3             | 8,8             | 0,078           | 0,080             |
| 14P                      | 60,1         | 65,5         | 206          | 205                 | 52           | 52,0         | 18,6         | 18,3         | 90            | 85<br>19           | 0,019        | 0,019        | 196<br>175      | 195             | 9               | 9,5             | <0.030          | 0,044             |
|                          | 8,4<br>39. 2 | 9,9<br>40,9  | 88,9<br>146  | 91,3<br>156         | 24,3<br>39,4 | 25,1<br>42,3 | 6,9<br>11 .7 | 7,0<br>12,2  | 13            | 17                 | 0,050        | 0,041        | 190             | 173<br>190      | 7,5<br>8.0      | 9,0<br>7,9      | 0,086           | 0,090             |
| SV 16P<br>17P            | 720          | 713          | 676          | 677                 | 198          | 197          | 44,4         | 45,4         | 588           | 577                | 0,006        | 0,144<br>ND  | 681             | 673             | 20              | 24              | 0,092           | 0,068             |
| 17P                      | 584          | 574          | 600          | 657                 | 154          | 170          | 52,7         | 56,7         | 615           | 628                | 0,006        | NSIR         | 629             | 629             | 24              | 23              | 0,048           | 0,058             |
| 19P                      | 90,8         | (***)        | 151          | (***)               | 33,9         | (***)        | 16,3         | (***)        | 155           | (***)              | 0,027        | (***)        | 361             | (***)           | 14              | (***)           | 0,064           | (***)             |
| 20P                      | 106          | (***)        | 108          | (***)               | 24,0         | (***)        | 11,7         | (***)        | 130           | (***)              | 0,028        | (***)        | 313             | (***)           | 9,7             | (***)           | 0,090           | (***)             |
| 21P                      | 19,4         | 19,4         | 169          | 176                 | 40,3         | 38,6         | 16,6         | 19,4         | 17            | 14                 | 0,031        | 0,029        | 139             | 150             | 9,8             | 9,8             | 0,057           | 0,069             |
| 22P                      | 10,4         | 10,4         | 309          | 330                 | 60           | 66,0         | 38,9         | 40,2         | ND            | ND                 | 0,031        | 0,027        | 32              | 32              | 13              | 12              | < 0.030         | 0,038             |
| 23P                      | 10,9         | (***)        | 164          | (***)               | 37,1         | (***)        | 17,5         | (***)        | 15            | (***)              | 0,043        | (***)        | 196             | (***)           | 13              | (***)           | 0,210           | (***)             |
| 24P                      | 90,3         | (***)        | 129          | (***)               | 30           | (***)        | 13,4         | (***)        | 79            | (***)              | 0,038        | (***)        | 265             | (***)           | 11              | (***)           | 0,110           | (***)             |
| 25P                      | 11,4         | 11,4         | 88,5         | 89,3                | 16,2         | 16,2         | 11,7         | 11,9         | 8,6           | 8,7                | 0,043        | 0,048        | 141             | 137             | 9,3             | 9,3             | 0,089           | 0,075             |
| 27P                      | 130          | (***)        | 157          | (***)               | 32,2         | (***)        | 18,7         | (***)        | 30            | (***)              | 0,020        | (***)        | 265             | (***)           | 15              | (***)           | 0,032           | (***)             |
| 28P                      | 16,9         | 16,4         | 121          | 132                 | 32,6         | 36,9         | 9,7          | 9,7          | 13            | 14                 | 0,025        | 0,021        | 183             | 181             | 7,8             | 7,8             | 0,041           | 0,038             |
| 29P                      | 11140        | 10370        | 4248         | 4228                | 607          | 621          | 667          | 654          | 2545          | 2741               | NSIR         | NSIR         | 7019            | 6870            | 150             | 148             | 0,061           | 0,120             |
| 30P                      | 208          | (***)        | 283          | (***)               | 81           | (***)        | 19,8         | (***)        | 237           | (***)              | 0,020        | (***)        | 405             | (***)           | 20              | (***)           | 0,054           | (***)             |
| 32P                      | 20,3         | 20,3         | 84           | 90,2                | 21,5         | 25,4         | 7,4          | 6,5          | 19            | 21                 | 0,043        | 0,039        | 184             | 186             | 7,8             | 8,3             | 0,100           | 0,097             |
| 33P                      | 6874         | 6774         | 1997         | 1990                | 385          | 383          | 253          | 252          | 1408          | 1353               | < 0.006      | NSIR         | 4085            | 4160            | 108             | 107             | 0,066           | 0,068             |
| 34P                      | 50,6         | (***)        | 139          | (***)               | 35           | (***)        | 12,6         | (***)        | 49            | (***)              | 0,027        | (***)        | 189             | (***)           | 15              | (***)           | 0,081           | (***)             |
| 35P                      | 82,4         | 122          | 121          | 142                 | 33,8         | 40,4         | 8,9          | 10,0         | 111           | 302                | 0,036        | 0,022        | 252             | 364             | 9,5             | 9,5             | 0,083           | 0,081             |
| 36P                      | 130          | 14,4         | 94,1         | 102                 | 18,5         | 19,7         | 11,7         | 12,8         | 202           | 11                 | 0,038        | 0,071        | 294             | 209             | 12              | 12              | 0,071           | 0,064             |
| 37P                      | 18910        | 18960        | 11110        | 11433               | 1519         | 1511         | 1786         | 1870         | 3722          | 3615               | NSIR         | NSIR         | 9531            | 10660           | 147             | 146             | < 0.030         | < 0.030           |
| AySA-LM740               | 79,9         | 77,4         | 258          | 253                 | 70,9         | 72,1         | 19,8         | 17,8         | 32            | 32                 | 0,015        | 0,014        | 219             | 222             | 10              | 10              | < 0.030         | < 0.030           |
| AySA-MO119               | 58,1         | 62,8         | 194          | 188                 | 51,2         | 50,0         | 16,1         | 15,4         | 19            | 24                 | 0,012        | 0,011        | 209             | 208             | 12              | 16              | 0,042           | 0,034             |
| AySA-EE713               | 31,8         | 28,8         | 95           | 92,6                | 15,8         | 17,4         | 13,8         | 12,0         | 30            | 29                 | 0,041        | 0,047        | 195             | 195             | 9,3             | 9,3             | 0,180           | 0,140             |
| AySA-CF721<br>AySA-AR715 | 32,3<br>8.4  | 30,8         | 23,8         | 23,0                | 6,2<br>30    | 6,6          | 2,1          | 1,6          | 51<br>< 6.0   | 49<br>(**)         | 0,091        | 0,087        | 111             | (**)            | 5,1             | 4,9             | 0,300           | 0,300             |
| AySA-AB715<br>AySA-LA702 | 8,4<br>2647  | (**)<br>2630 | 133<br>937   | 941                 | 30<br>214    | (**)<br>216  | 14,2<br>98,6 | 98,1         | < 6.0<br>369  | 375                | 0,030        | (**)<br>NSIR | 104<br>1566     | 1605            | 9,3<br>70       | (**)<br>69      | 0,100           | 0,420             |
|                          |              |              |              |                     |              |              |              |              |               |                    |              |              |                 |                 |                 |                 |                 | 0,420             |
| AySA-AV701               | 80,4         | 79,4         | 44,9         | 45,7                | 10,7         | 10,5         | 4,5          | 4,7          | 116           | 115                | 0,045        | 0,045        | 340             | 344             | 14              | 15              | 0,170           | 0,2               |

ND: No detectado; NSIR: no se informa resultado por interferencia.

### Observaciones:

(N) No se pudo muestrear por obstrucción de la bomba por extraer cemento del interior del pozo durante el muestreo.

(\*) Pozo obstruido por obra v

(\*\*) Pozo obstruido por tierra y pasto, no se pudo muestrear ya que no se detecto la ubicación. Se concurrió nuevamente el día 17/03 a pedido de Acumar, luego de ubicar nuevamente el pozo. Se encontró que a los 13 metros estaba obstruido, el nivel estático se encontraba en la obtrucción, por lo cual no se pudo extraer la muestra.

(\*\*\*) Pozo no monitoreados en la presente campaña.



| CALIDAD DE      |              |            |                        |             |              |              |                |              |            |                     |       |              |              |                       |
|-----------------|--------------|------------|------------------------|-------------|--------------|--------------|----------------|--------------|------------|---------------------|-------|--------------|--------------|-----------------------|
| PARAMETRO       | S FISICO-QU  | IMICOS MED | DIDOS EN LA            | BORATORIO - | INA CTUA -   |              |                |              | R 2015     |                     |       |              |              |                       |
|                 | Nitrénana T  | V:-II      | Nihudaaaa              |             | Bithu f mann |              | ESTOS DEL NITE |              | 81i4=f==== | de Bibelane         | Nitri | 2            | Ation 6 ma   | T-4-1                 |
| Código del Pozo | Nitrógeno To |            | Nitrógeno              |             | Nitrógeno    |              | Nitro          |              | Nitrógeno  |                     |       |              | Nitróge      |                       |
|                 | Oct/Nov 2014 |            | Oct/Nov 2014           |             |              | Feb/Mar 2015 |                | Feb/Mar 2015 |            | Feb/Mar 2015        |       | Feb/Mar 2015 | Oct/Nov 2014 |                       |
|                 | mg N         |            |                        | NH3/I       |              | -NO₃/I       | mg N           |              | _          | -NO <sub>2</sub> /I | mg l  | NO₂/I        | _            | N <sub>total</sub> /I |
| 1P              | ND           | ND         | ND                     | < 0.09      | 2,1          | 2,1          | 9,3            | 9,3          | ND         | ND                  | ****  | ****         | 2,1          | 2,1                   |
| 2P              | < 1.0        | ND         | ND                     | ND          | 3,3          | 3,6          | 14,6           | 15,9         | ND         | ND                  |       |              | 3,3          | 3,6                   |
| 3P              | ND           | ND         | ND                     | < 0.09      | ND           | ND           |                |              | ND         | ND                  |       |              |              |                       |
| 4P              | ND           | ND         | ND                     | < 0.09      | < 1.0        | < 1.0        |                | ****         | ND         | ND                  |       |              | ***          |                       |
| 5P              | (¤)          | (*)        | (H)                    | (*)         | (II)         | (*)          | (¤)            | (*)          | (¤)        | (*)                 | (n)   | (*)          | (¤)          | (*)                   |
| 6P              | 4,0          | 4,0        | 3,70                   | 3,4         | < 0.29       | ND           |                |              | ND         | ND                  |       |              | 4,0          | 4,0                   |
| 7P              | ND           | < 1.0      | < 0.09                 | 0,12        | 8,1          | 7,6          | 35,9           | 34           | ND         | ND                  |       |              | 8,1          | 7,6                   |
| 8P              | ND           | ND         | ND                     | < 0.09      | 6,6          | 4,5          | 29,2           | 20           | ND         | ND                  |       |              | 6,6          | 4,5                   |
| 9P              | ND           | (***)      | ND                     | (***)       | < 1.0        | (***)        |                | (***)        | ND         | (***)               |       | (***)        |              | (***)                 |
| 10P             | ND           | < 1.0      | ND                     | ND          | < 1.0        | < 0.29       |                |              | ND         | ND                  |       |              |              |                       |
| 11P             | < 1.0        | (***)      | ND                     | (***)       | < 1.0        | (***)        |                | (***)        | ND         | (***)               |       | (***)        |              | (***)                 |
| 12P             | ND           | (***)      | ND                     | (***)       | 5,3          | (***)        | 23,5           | (***)        | ND         | (***)               |       | (***)        | 5,3          | (***)                 |
| 13P             | ND           | ND         | < 0.09                 | ND          | 9,4          | 12           | 41,6           | 53           | ND         | ND                  |       |              | 9,4          | 12                    |
| 14P             | < 1.0        | < 1.0      | ND                     | 0,12        | 25           | 26           | 111,0          | 115          | < 0.012    | ND                  |       |              | 25           | 26                    |
| 15P             | ND           | < 1.0      | ND                     | < 0.09      | 3,0          | 2,3          | 13,3           | 10           | ND         | ND                  |       |              | 3,0          | 2,3                   |
| SV 16P          | < 1.0        | < 1.0      | ND                     | ND          | 6,6          | 6,4          | 29,2           | 28           | 0,03       | 0,062               | 0,101 | 0,204        | 6,6          | 6,5                   |
| 17P             | ND           | < 1.0      | < 0.09                 | < 0.09      | 8,0          | 7,9          | 35,4           | 35           | < 0.012    | 0,012               |       | 0,039        | 8,0          | 7,9                   |
| 18P             | ND           | ND         | ND                     | ND          | 4,2          | 4,3          | 18,6           | 19           | < 0.012    | ND                  |       |              | 4,2          | 4,3                   |
| 19P             | ND           | (***)      | ND                     | (***)       | 1,2          | (***)        | 5,3            | (***)        | ND         | (***)               |       | (***)        | 1,2          | (***)                 |
| 20P             | < 1.0        | (***)      | ND                     | (***)       | ND           | (***)        |                | (***)        | ND         | (***)               |       | (***)        |              | (***)                 |
| 21P             | ND           | ND         | ND                     | ND          | 3,7          | 1,6          | 16,4           | 7,1          | < 0.012    |                     |       |              | 3,7          | 1,6                   |
| 22P             | ND           | < 1.0      | < 0.09                 | 0,11        | ND           | ND           |                |              | < 0.012    | ND                  |       |              |              |                       |
| 23P             | < 1.0        | (***)      | 0,14                   | (***)       | 5,9          | (***)        | 26,1           | (***)        | ND         | (***)               |       | (***)        | 5,9          | (***)                 |
| 24P             | ND           | (***)      | ND                     | (***)       | 1,8          | (***)        | 8,0            | (***)        | ND         | (***)               | ****  | (***)        | 1,8          | (***)                 |
| 25P             | ND           | ND         | ND                     | < 0.09      | 3,3          | 2,1          | 14,6           | 9,3          | < 0.012    | ND                  |       |              | 3,3          | 2,1                   |
| 27P             | < 1.0        | (***)      | < 0.09                 | (***)       | 10           | (***)        | 44,3           | (***)        | 0,036      | (***)               | 0,012 | (***)        | 10           | (***)                 |
| 28P             | ND           | ND         | ND                     | ND          | 5,3          | 13           | 23,5           | 58           | < 0.012    | ND                  |       |              | 5,3          | 13                    |
| 29P             | < 1.0        | < 1.0      | 0,49                   | 0,60        | ND           | < 1.0        | ***            | ****         | < 0.012    | ND                  |       |              |              |                       |
| 30P             | ND           | (***)      | ND                     | (***)       | 2,8          | (***)        | 12,4           | (***)        | ND         | (***)               |       | (***)        | 2,8          | (***)                 |
| 32P             | ND           | ND         | ND                     | ND          | 16           | 18           | 70,9           | 80           | ND         | ND                  | ****  | ****         | 16           | 18                    |
| 33P             | 4,9          | 5,2        | NSIR                   | 5           | ND           | ND           | ****           | ****         | ND         | ND                  |       |              | 4,9          | 5,2                   |
| 34P             | ND           | (***)      | ND                     | (***)       | 11           | (***)        | 48,7           | (***)        | ND         | (***)               | ****  | (***)        | 11           | (***)                 |
| 35P             | ND           | ND         | ND                     | < 0.09      | 13           | 11           | 57,6           | 49           | < 0.012    | ND                  | ****  | ****         | 13           | 11                    |
| 36P             | ND           | ND         | ND                     | < 0.09      | 2,9          | 5,5          | 12,8           | 24           | < 0.012    | < 0.012             |       |              | 2,9          | 5,5                   |
| 37P             | 1,4          | 2,1        | 0,29                   | 1,8         | ND           | < 1.0        | ****           | ****         | ND         | ND                  |       |              | 1,4          | 2,1                   |
| AySA-LM740      | ND           | ND         | < 0.09                 | < 0.09      | 22           | 22           | 97,4           | 97           | ND         | ND                  |       |              | 22           | 22                    |
| AySA-MO119      | < 1.0        | ND         | 0,40                   | 0,16        | 20           | 25           | 88,6           | 111          | 0,019      | 0,03                | 0,063 | 0,099        | 20           | 25                    |
| AySA-EE713      | ND           | ND         | ND                     | ND          | 0,56         | < 1.0        | 2,5            |              | 0,013      | ND                  | 0,043 |              | 0,6          |                       |
| AySA-CF721      | ND           | ND         | ND                     | ND          | < 1.0        | < 1.0        |                |              | ND         | ND                  |       |              |              |                       |
| AySA-AB715      | < 1.0        | (**)       | ND                     | (**)        | 1,2          | (**)         | 5,3            | (**)         | ND         | (**)                |       | (**)         | 1,2          | (**)                  |
| AySA-LA702      | ND           | < 1.0      | < 0.09                 | 0,09        | ND           | 0,42         |                | 1,9          | 0,013      | ND                  | 0,043 |              |              |                       |
| AySA-AV701      | < 1.0        | ND         | ND<br>or interferencia | 0,28        | < 0.29       | ND           |                |              | ND         | ND                  |       |              |              |                       |

ND: No detectado; NSIR: no se informa resultado por interferencia.

### Observaciones:

(x) No se pudo muestrear por obstrucción de la bomba por extraer cemento del interior del pozo durante el muestreo.

(\*) Pozo obstruido por obra vial.

(\*\*) Pozo obstruido por tierra y pasto, no se pudo muestrear ya que no se detecto la ubicación. Se concurrio nuevamente el día 17/03 a pedido de Acumar, luego de ubicar nuevamente el pozo. Se encontró que a los 13 metros estaba obstruido, el nivel estático se encontraba en la obtrucción, por lo cual no se pudo extraer la muestra.

(\*\*\*) Pozo no monitoreados en la presente campaña.



 $<sup>^1 {\</sup>rm Los~Nitratos~(NO_3)}$  se calcularon a partir de Nitrógeno de Nitrato (N-NO $_3$ )

<sup>&</sup>lt;sup>2</sup> Los Nitritos (NO<sub>2</sub>) se calcularon a partir de Nitrógeno de Nitrito (N-NO<sub>2</sub>)



# **FIN DE DOCUMENTO**